【題目】如圖,在 中, ,tan ,AB=6cm.動點P從點A開始沿邊AB向點B以1 cm/s的速度移動,動點Q從點B開始沿邊BC向點C以2cm/s的速度移動.若P,Q兩點分別從A,B兩點同時出發(fā),在運動過程中, 的最大面積是( )

A.18cm2
B.12cm2
C.9cm2
D.3cm2

【答案】C
【解析】∵tan∠C= ,AB=6cm,

,

∴BC=8,

由題意得:AP=t,BP=6-t,BQ=2t,

設(shè)△PBQ的面積為S,則S= ×BP×BQ= ×2t×(6-t),S=-t2+6t=-(t2-6t+9-9)=-(t-3)2+9,P:0≤t≤6,Q:0≤t≤4,

∴當(dāng)t=3時,S有最大值為9,即當(dāng)t=3時,△PBQ的最大面積為9cm2

所以答案是:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】19屆亞運會將于2022年在杭州舉行,“絲綢細節(jié)”助力杭州打動世界.杭州絲綢公司為亞運會設(shè)計手工禮品,投入元錢,若以2條領(lǐng)帶和1條絲巾為一份禮品,則剛好可制作600份禮品;若以1條領(lǐng)帶和3條絲巾為一份禮品,則剛好可制作400份禮品.

1)若萬元,求領(lǐng)帶及絲巾的制作成本是多少?

2)若用元錢全部用于制作領(lǐng)帶,總共可以制作幾條?

3)若用元錢恰好能制作300份其他的禮品,可以選擇條領(lǐng)帶和條絲巾作為一份禮品(兩種都要有),請求出所有可能的、的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列證明過程,并在括號內(nèi)填上依據(jù).

如圖,點EAB上,點FCD上,∠1=∠2,∠B=∠C,求證ABCD

證明:∵∠1=∠2(已知),∠1=∠4   ),

∴∠2   (等量代換),

   BF   ),

∴∠3=∠      ).

又∵∠B=∠C(已知),

∴∠3=∠B   ),

ABCD   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進了20米到達地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù): ≈1.73, ≈1.41.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)“足球進校園”的目標(biāo),某校計劃為學(xué)校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.

(1)求A,B兩種品牌的足球的單價.
(2)求該校購買20個A品牌的足球和2個B品牌的足球的總費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=-x2,4x5,x4,若無論 x取何值,y 總?cè)?/span> , 中的最大值,則 y的最小值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一組數(shù)據(jù)﹣1、4、﹣1、2下列結(jié)論不正確的是( )
A.平均數(shù)是1
B.眾數(shù)是-1
C.中位數(shù)是0.5
D.方差是3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù) 的圖象與 軸交于 (1, 0), 兩點,與 軸交于點 ,其頂點 的坐標(biāo)為(-3, 2).

(1)求這二次函數(shù)的關(guān)系式;
(2)求 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2-2x+3的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

(1)求點A、B、C的坐標(biāo);
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,若點P在點Q左邊,當(dāng)矩形PMNQ的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ,過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若, 求點F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案