【題目】(10分)如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y=x刻畫.
(1)請用配方法求二次函數(shù)圖象的最高點P的坐標(biāo);
(2)小球的落點是A,求點A的坐標(biāo);
(3)連接拋物線的最高點P與點O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標(biāo).
【答案】(1)(2,4);(2)(,);(3);(4)(,).
【解析】
試題(1)利用配方法拋物線的一般式化為頂點式,即可求出二次函數(shù)圖象的最高點P的坐標(biāo);
(2)聯(lián)立兩解析式,可求出交點A的坐標(biāo);
(3)作PQ⊥x軸于點Q,AB⊥x軸于點B.根據(jù)S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入數(shù)值計算即可求解;
(4)過P作OA的平行線,交拋物線于點M,連結(jié)OM、AM,由于兩平行線之間的距離相等,根據(jù)同底等高的兩個三角形面積相等,可得△MOA的面積等于△POA的面積.設(shè)直線PM的解析式為y=x+b,將P(2,4)代入,求出直線PM的解析式為y=x+3.再與拋物線的解析式聯(lián)立,得到方程組,解方程組即可求出點M的坐標(biāo).
試題解析:(1)由題意得,y=﹣x2+4x=﹣(x﹣2)2+4,
故二次函數(shù)圖象的最高點P的坐標(biāo)為(2,4);
(2)聯(lián)立兩解析式可得:,解得:,或.
故可得點A的坐標(biāo)為(,);
(3)如圖,作PQ⊥x軸于點Q,AB⊥x軸于點B.
S△POA=S△POQ+S△梯形PQBA﹣S△BOA
=×2×4+×(+4)×(﹣2)﹣××
=4+﹣
=;
(4)過P作OA的平行線,交拋物線于點M,連結(jié)OM、AM,則△MOA的面積等于△POA的面積.
設(shè)直線PM的解析式為y=x+b,
∵P的坐標(biāo)為(2,4),
∴4=×2+b,解得b=3,
∴直線PM的解析式為y=x+3.
由,解得,,
∴點M的坐標(biāo)為(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義點P(a ,b )的“伴隨點”為Q,且規(guī)定:當(dāng)a ≥ b時,Q為( b,-a );當(dāng) a<b 時,Q為( a,-b).
(1)點(2,1)的伴隨點坐標(biāo)為__________;
(2)若點A(a ,2)的伴隨點在函數(shù)y=的圖像上,求a的值;
(3)已知直線l與坐標(biāo)軸交于(6,0),(0,3)兩點.將直線l上所有點的伴隨點組成一個新的圖形記作M.請直接寫出直線y=—x+c與圖形M有交點時相應(yīng)的c的取值范圍為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個工程隊承包了地鐵某標(biāo)段全長3900米的施工任務(wù),分別從南,北兩個方向同時向前掘進(jìn)。已知甲工程隊比乙工程隊平均每天多掘進(jìn)0.4米經(jīng)過13天的施工兩個工程隊共掘進(jìn)了156米.
(1)求甲,乙兩個工程隊平均每天各掘進(jìn)多少米?
(2)為加快工程進(jìn)度兩工程隊都改進(jìn)了施工技術(shù),在剩余的工程中,甲工程隊平均每天能比原來多掘進(jìn)0.4米,乙工程隊平均每天能比原來多掘進(jìn)0.6米,按此施工進(jìn)度能夠比原來少用多少天完成任務(wù)呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1,0),B(3,0)兩點.
(1)求拋物線的解析式和頂點坐標(biāo);
(2)當(dāng)0<x<3時,求y的取值范圍;
(3)點P為拋物線上一點,若S△PAB=10,求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256…,用你所發(fā)現(xiàn)的規(guī)律寫出21+22+23+24+25+…+22018的末位數(shù)字是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛貨車從貨場出發(fā),向東走2千米到達(dá)批發(fā)部,繼續(xù)向東走1.5千米到達(dá)商場,又向西走5.5千米到達(dá)超市,最后回到貨場.
(1)以貨場為原點,以東為正方向,用一個單位長度表示1千米,你能在數(shù)軸上分別表示出貨場,批發(fā)部,商場,超市的位置嗎?
(2)超市距離貨場多遠(yuǎn)?
(3)此貨車每千米耗油0.1升,每升汽油6.20元,請計算此貨車一共需要多少汽油費?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算及判斷正確的是( 。
A. ﹣5×÷(﹣)×5=1
B. 方程(x2+x﹣1)x+3=1有四個整數(shù)解
C. 若a×5673=103,a÷103=b,則a×b=
D. 有序數(shù)對(m2+1,m)在平面直角坐標(biāo)系中對應(yīng)的點一定在第一象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).
(1)請在這個坐標(biāo)系中作出△ABC關(guān)于y軸對稱的△A1B1C1.
(2)分別寫出點A1、B1、C1的坐標(biāo).
(3)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°.
(1)如圖1,當(dāng)點A、C、D在同一條直線上時,AE與BD的數(shù)量關(guān)系是 ;
位置關(guān)系是 ;
(2)如圖2,當(dāng)點A、C、D不在同一條直線上時,(1)中的結(jié)論還成立嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com