【題目】在等邊△ABC中,點D是邊BC上一點.作射線AD,點B關于射線AD的對稱點為點E.連接CE并延長,交射線AD于點F.
(1)如圖①,連接AE,
①AE與AC的數(shù)量關系是 ;
②設∠BAF=a,用a表示∠BCF的大;
(2)如圖②,用等式表示線段AF,CF,EF之間的數(shù)量關系,并證明.
【答案】(1)①AE=AC;②∠BCF=α;(2)結論:AF=EF+CF.證明見解析.
【解析】
(1)①可得AE=AB,AB=AC,則AE=AC;
②根據(jù)∠BCF=∠ACE-∠ACB,求出∠ACE,∠ACB即可.
(2)結論:AF=EF+CF.如圖,作∠FCG=60°交AD于點G,連接BF.證明△ACG≌△BCF即可解決問題.
(1)①∵點B關于射線AD的對稱點為E,
∴AE=AB.
∵△ABC為等邊三角形,
∴AB=AC,
∴AE=AC.
故答案為:AE=AC.
②解:∵∠BAF=∠EAF=α,△ABC是等邊三角形,
∴AB=AC,∠BAC=∠ACB=60°,
∴∠EAC=60°﹣2α,AE=AC,
∴∠ACE= [180°﹣(60°﹣2α)]=60°+α,∴∠BCF=∠ACE﹣∠ACB=60°+α﹣60°=α.
(2)結論:AF=EF+CF.
證明:如圖,作∠FCG=60°交AD于點G,連接BF.
∵∠BAF=∠BCF=α,∠ADB=∠CDF,
∴∠ABC=∠AFC=60°,
∴△FCG是等邊三角形,
∴GF=FC.
∵△ABC是等邊三角形,
∴BC=AC,∠ACB=60°,
∴∠ACG=∠BCF=α,
在△ACG和△BCF中,
,
∴△ACG≌△BCF(SAS),
∴AG=BF.
∵點B關于射線AD的對稱點為E,
∴BF=EF,
∴AF﹣AG=GF,
∴AF=EF+CF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于點和.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若定義橫、縱坐標均為整數(shù)的點叫做好點,則圖中陰影部分區(qū)域內(nèi)(不含邊界)好點的個數(shù)為________;
(3)請根據(jù)圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形OBCD中,OB=1,相鄰兩內(nèi)角之比為1:2,將菱形OBCD繞頂點O順時針旋轉90°,得到菱形OB′C′D′視為一次旋轉,則菱形旋轉45次后點C的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形臺球桌面ABCD上有兩個球P,Q.PQ∥AB,球P連續(xù)撞擊臺球桌邊AB,BC反射后,撞到球Q.已知點M,N是球在AB,BC邊的撞擊點,PQ=4,∠MPQ=30,且點P到AB邊的距離為3,則四邊形PMNQ的周長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,已知 A(4,0)、B(1,3), 過的直線是繞著△OAB的頂點A旋轉,與y軸相交于點P,探究解決下列問題:
(1)如圖1所示,當直線旋轉到與邊OB相交時,試用無刻度的直尺和圓規(guī)確定點P的位置,使頂點O、B到直線的距離之和最大,(保留作圖痕跡);
(2)當直線旋轉到與y軸的負半軸相交時,使頂點O、B到直線的距離之和最大,請直接寫出點P的坐標是 .(可在圖2中分析)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線G:有最低點。
(1)求二次函數(shù)的最小值(用含m的式子表示);
(2)將拋物線G向右平移m個單位得到拋物線G1。經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點的縱坐標y與橫坐標x之間存在一個函數(shù)關系,求這個函數(shù)關系式,并寫出自變量x的取值范圍;
(3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點P,結合圖像,求點P的縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=x+2經(jīng)過點A(m,-2),將點A向右平移7個單位長度,得到點B,拋物線的頂點為C.
(1)求m的值和點B的坐標;
(2)求點C的坐標(用含n的代數(shù)式表示);
(3)若拋物線與線段AB只有一個公共點,結合函數(shù)圖象,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某年五月,我國南方某省A、B兩市遭受嚴重洪澇災害,鄰近縣市C、D決定調(diào)運物資支援A、B兩市災區(qū).已知C市有救災物資240噸,D市有救災物資260噸,現(xiàn)將這些救災物資全部調(diào)往A、B兩市,A市需要的物資比B市需要的物資少100噸.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用分別為每噸15元和30元,設從D市運往B市的救災物資為x噸.
(1)A、B兩市各需救災物資多少噸?
(2)設C、D兩市的總運費為w元,求w與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com