【題目】在慈善一日捐活動中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計,并繪制成下面的統(tǒng)計圖.

1)這50名同學(xué)捐款的眾數(shù)為     元,中位數(shù)為     元;

2)該校共有600名學(xué)生參與捐款,請估計該校學(xué)生的捐款總數(shù).

【答案】(1)15元;15元;(2)7560.

【解析】

1)根據(jù)眾數(shù)的定義即出現(xiàn)次數(shù)最多的數(shù)據(jù)進(jìn)而得出即可,再利用中位數(shù)的定義得出即可;
2)利用樣本估計總體的思想,用總數(shù)乘以捐款平均數(shù)即可得到捐款總數(shù).

1)數(shù)據(jù)15元出現(xiàn)了20次,出現(xiàn)次數(shù)最多,所以眾數(shù)是15元;
數(shù)據(jù)總數(shù)為50,所以中位數(shù)是第2526位數(shù)的平均數(shù),即(15+15÷2=15(元).
故答案為:15,15
2)根據(jù)題意得:
600×5×8+10×16+15×20+20×4+25×2÷50=7560(元);
答:該校學(xué)生的捐款總數(shù)是7560元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB26PAB上(不與點A,B重合)的任一點,點CD為⊙O上的兩點.若∠APD=∠BPC,則稱∠DPC為直徑AB回旋角

1)若∠BPC=∠DPC60°,則∠DPC是直徑AB回旋角嗎?并說明理由;

2)猜想回旋角DPC的度數(shù)與弧CD的度數(shù)的關(guān)系,給出證明(提示:延長CP交⊙O于點E);

3)若直徑AB回旋角120°,且△PCD的周長為24+13,直接寫出AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C、D都在⊙O上,且CD平分∠ACB,交AB于點E

1)求證:∠ABD=∠BCD

2)若DE13,AE17,求⊙O的半徑;

3DFAC于點F,試探究線段AF、DF、BC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點AACx軸交拋物線于點C,AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標(biāo)為m.

(1)求拋物線的解析式;

(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.

(1)求證:AP是⊙O的切線;

(2)求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年,國家衛(wèi)生健康委員會和國家教育部在全國開展了兒童青少年近視調(diào)查工作,調(diào)查數(shù)據(jù)顯示,全國兒童青少年近視過半.某校初三學(xué)習(xí)小組為了解本校學(xué)生對自己視力保護(hù)的重視程度,隨機(jī)在校內(nèi)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常重視”“重視”“比較重視”“不重視”四類,并將結(jié)果繪制成下面的兩幅不完整的統(tǒng)計圖:

根據(jù)圖中信息,解答下列問題:

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計圖;

2)該校共有學(xué)生1000人,請你估計該校對視力保護(hù)“非常重視”的學(xué)生人數(shù);

3)對視力“非常重視”的4人有,兩名男生,,兩名女生,若從中隨機(jī)抽取兩人向全校作視力保護(hù)交流,請利用樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE,將ADE沿AE對折到AFE,延長EF交邊BC于點G,連接AG,CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S=,其中正確的有( )個.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象經(jīng)過兩點,與反比例函數(shù)的圖象在第一象限內(nèi)的交點為

求一次函數(shù)和反比例函數(shù)的表達(dá)式;

x軸上是否存在點P,使?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是線段OB上的一點(不與點B重合),D,E是半圓上的點且CDBE交于點F,用①,②DCAB,③FB=FD中的兩個作為題設(shè),余下的一個作為結(jié)論組成一個命題,則組成真命題的個數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案