【題目】如圖,△ABC中,∠C=90°,AC=6,AB=10,點D是邊BC上一點.若沿AD將△ACD翻折,點C剛好落在AB邊上點E處,則AD= _______.
科目:初中數(shù)學 來源: 題型:
【題目】
如圖,在△ABC中,點E、D、F分別在邊AB、BC、CA上,且DE∥CA,DF∥BA.下列四個判斷中,不正確的是( )
A.四邊形AEDF是平行四邊形
B.如果∠BAC=90°,那么四邊形AEDF是矩形
C.如果AD平分∠BAC,那么四邊形AEDF是矩形
D.如果AD⊥BC且AB=AC,那么四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點,且滿足∠BAC=∠APC=60°,
(1)求證:△ABC是等邊三角形;
(2)求圓心O到BC的距離OD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的折線是某個函數(shù)的圖象,根據(jù)圖象解答下列問題.
(1)寫出自變量x的取值范圍:__________,函數(shù)值y的取值范圍:__________;
(2)求這個分段函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E點.
(1)當∠BDA=115°時,∠BAD=___°,∠DEC=___°;
(2)當DC等于多少時,△ABD與△DCE全等?請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù);若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:在以后你的學習中,我們會學習一個定理:直角三角形斜邊上的中線等于斜邊的一半,即:如圖1,在Rt△ABC中,∠ACB=90°,若點D是斜邊AB的中點,則CD=AB.
靈活應用:如圖2,△ABC中,∠BAC=90°,AB=3, AC=4,點D是BC的中點,將△ABD沿AD翻折得到△AED,連接BE, CE.
(1)求AD的長;
(2)判斷△BCE的形狀;
(3)求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A1的坐標為(1,0),A2在y軸的正半軸上,且∠A1A2O =30°,過點A2作A2A3⊥A1A2,垂足為A2,交x軸于點A3;過點A3作A3A4⊥A2A3,垂足為A3,交y軸于點A4;過點A4作A4A5⊥A3A4,垂足為A4,交x軸于點A5;過點A5作A5A6⊥A4A5,垂足為A5,交y軸于點A6;…按此規(guī)律進行下去,則點A2018的縱坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等腰直角三角形,∠C=90°,點M是AC的中點,延長BM至點D,使DM=BM,連接AD.
(1)如圖①,求證:△DAM≌△BCM;
(2)已知點N是BC的中點,連接AN.
①如圖②,求證:△BCM≌△ACN;
②如圖③,延長NA至點E,使AE=NA,連接DE.求證:BD⊥DE.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com