【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=6,A,N是AB邊上的兩點,且滿足∠MCN=45°,若AM=3,則MN的長為_____.
【答案】5
【解析】
將△CBN順時針旋轉(zhuǎn)90度得到△ACR,連接RM得到△CRA≌△CNB全等BN=AR,再證△CNM≌△CRM,即可得到MR=MN,再證△ARM是直角三角形并利用勾股定理解三角形即可.
解:如圖,將△CBN順時針旋轉(zhuǎn)90度,得到△ACR,連接RM
則△CRA≌△CNB全等,
∴AR=BN,∠B=∠CAR,∠BCN=∠ACR,
∵∠ACB=90°,AC=BC=6,
∴AB=12,∠B=∠CAB=45°,
∴∠CAR=45°,
∴∠MAR=90°,
∵∠MCN=45°,
∴∠BCN+∠ACM=45°=∠ACM+∠ACR,
∴∠MCN=∠MCR,且CN=CR,CM=CM,
∴△CNM≌△CRM(SAS)
∴MN=MR,
∵AB=12,AM=3,
∴BN+MN=9,
∴BN=AR=9﹣MN,
∵MR2=AM2+AR2,
∴MN2=(9﹣MN)2+9,
∴MN=5
故答案為5.
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃利用一片空地建一個學生自行車車棚,其中一面靠墻,這堵墻的長度為12米.計劃建造車棚的面積為80平方米,已知現(xiàn)有的木板材料可使新建板墻的總長為26米.
(1)為了方便學生出行,學校決定在與墻平行的一面開一個2米寬的門,那么這個車棚的長和寬分別應(yīng)為多少米?
(2)如圖,為了方便學生取車,施工單位決定在車棚內(nèi)修建幾條等寬的小路,使得停放自行車的面積為54平方米,那么小路的寬為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在陽光下,小東同學測得一根長為米的竹竿的影長為米.
同一時刻米的竹竿的影長為________米.
同一時刻小東在測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在操場的第一級臺階上,測得落在第一級臺階上的影子長為米,第一級臺階的高為米,落在地面上的影子長為米,則樹的高度為________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=12,AM,BN是⊙O的兩條切線,DC切⊙O于E,交BN于C,設(shè)AD=x,BC=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)若x,y是2t2-30t+m=0的兩實根,求x,y的值;
(3)求△OCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列方程是關(guān)于x的一元二次方程的是( 。
A.ax2+bx+c=0B.
C.x(x+2)=x2﹣5D.3(x+1)2=2(x+1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為“鳳凰”方程.已知是“鳳凰”方程,且有兩個相等的實數(shù)根,則下列結(jié)論正確的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點.∠AEF=90°,且EF交正方形外角∠DCG的平分線CF于點F,求證:AE=EF.
經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎(chǔ)上,同學們作了進一步的研究:
(1)小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結(jié)論“AE=EF”仍然成立。你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數(shù)式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數(shù)式m2+m+4的最小值;
(2)求代數(shù)式4﹣x2+2x的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設(shè)AB=x(m),請問:當x取何值時,花園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是( )
A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com