精英家教網 > 初中數學 > 題目詳情

【題目】計算

(1)﹣7﹣5.

(2)(﹣15)﹣(﹣9)

(3)(﹣5)×(﹣7)+20÷(﹣4)

(4)()×(﹣36)

(5)﹣81÷×÷(﹣16)

(6)5﹣(﹣2)+(﹣3)﹣(+4

【答案】(1)﹣12;(2)﹣6;(3)30;(4)﹣1;(5)1;(6)0.

【解析】

(1)根據有理數的減法可以解答本題;

(2)根據有理數的減法可以解答本題

(3)根據有理數的乘除法和加法可以解答本題;

(4)根據乘法分配律可以解答本題

(5)根據有理數的乘除法可以解答本題;

(6)根據有理數的加減法可以解答本題

1)原式=(﹣7)+(﹣5)=﹣12;

(2)原式=(﹣15)+9=﹣6;

(3)原式=35+(﹣5)=30;

(4)原式=(﹣4)+(﹣6)+9=﹣1;

(5)原式=81=1;

(6)原式=5(﹣3)+(﹣4)=5+(﹣4)=2+(-2)=0.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為1的正方形網格中,△AOB的頂點均在格點上,點A、B的坐標分別是A(3,2)、B(1,3).將△AOB繞點O逆時針旋轉90°后得到△A1OB1
(1)畫出旋轉后的△A1OB1 , 點A1的坐標為;
(2)在旋轉過程中,點B經過的路徑為 ,求 的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長為10,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于二次函數y=x2﹣3x+2和一次函數y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)稱為這兩個函數的“再生二次函數”,其中t是不為零的實數,其圖像記作拋物線E,現有點A(2,0)和拋物線E上的點B(﹣1,n),請完成下列任務;
(1)【嘗試】①當t=2時,拋物線y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的頂點坐標為
(2)②判斷點A是否在拋物線E上;
(3)③求n的值.
(4)【發(fā)現】通過(2)和(3)的演算可知,對于t取任何不為零的實數,拋物線E總過定點,坐標為
(5)【應用】
①二次函數y=﹣3x2+5x+2是二次函數y=x2﹣3x+3和一次函數y=﹣2x+4的一個“再生二次函數”嗎?如果是,求出t的值;如果不是,說明理由;
②以AB為邊作矩形ABCD,使得其中一個頂點落在y軸上;若拋物線E經過A,B,C,D其中的三點,求出所有符合條件的t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于點D,且∠D=2∠CAD.
(1)求∠D的度數;
(2)若CD=2,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算: +( 1﹣2cos60°+(2﹣π)0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】初三年級教師對試卷講評課中學生參與的深度與廣度進行評價調查,其評價項目為主動質疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數分布直方圖和扇形統(tǒng)計圖(均不完整),請根據圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了名學生;
(2)在扇形統(tǒng)計圖中,項目“主動質疑”所在的扇形的圓心角的度數為度;
(3)請將頻數分布直方圖補充完整;
(4)如果全市有6000名初三學生,那么在試卷評講課中,“獨立思考”的初三學生約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=ax+b(a≠0)的圖形與反比例函數y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點B的坐標為(m,﹣2).
(1)求該反比例函數和一次函數的解析式.
(2)求△AOC的面積.

查看答案和解析>>

同步練習冊答案