【題目】在炎熱的夏季,遮陽傘在我們的生活中隨處可見.如圖①,滑動(dòng)調(diào)節(jié)式遮陽傘的立柱直于地面,點(diǎn)為立柱上的滑動(dòng)調(diào)節(jié)點(diǎn),傘體的截面示意圖為,為中點(diǎn),,,.當(dāng)點(diǎn)位于初始位置時(shí),點(diǎn)與重合(如圖②).根據(jù)生活經(jīng)驗(yàn),當(dāng)太陽光線與垂直時(shí),遮陽效果最佳.已知太陽光線與地面的夾角為(如圖③),為使遮陽效果最佳,點(diǎn)需從上調(diào)多少米?(結(jié)果精確到)(參考數(shù)據(jù):,,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)交x軸于,,在y軸上有一點(diǎn),連接AE.
求二次函數(shù)的表達(dá)式;
點(diǎn)D是第二象限內(nèi)的拋物線上一動(dòng)點(diǎn).
①求面積最大值并寫出此時(shí)點(diǎn)D的坐標(biāo);
②若,求此時(shí)點(diǎn)D坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象過點(diǎn)A(1,2),B(3,2),C(5,7).若點(diǎn)M(﹣2,y1),N(﹣1,y2),K(8,y3)也在二次函數(shù)y=ax2+bx+c的圖象上,則y1,y2,y3從小到大的關(guān)系是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c的圖象與x軸交于點(diǎn)A(﹣2,0),點(diǎn)B(6,0),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)點(diǎn)E是線段AB上的點(diǎn),直線EM⊥x軸,設(shè)點(diǎn)E的橫坐標(biāo)為t.
①當(dāng)t=6時(shí)(如圖1),點(diǎn)P為x軸下方拋物線上的一點(diǎn),若∠COP=∠DBM,求此時(shí)點(diǎn)P的橫坐標(biāo);
②當(dāng)2<t<6時(shí)(如圖2),直線EM與線段BC,BD和拋物線分別相交于點(diǎn)F,G,H,試證明線段EF,FG,GH總能組成等腰三角形,如果此等腰三角形底角的余弦值為,求此等腰三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩點(diǎn)在反比例函數(shù)(k>0,x>0)的圖象上,AC⊥y軸于點(diǎn)C,BD⊥x軸于點(diǎn)D,點(diǎn)A的橫坐標(biāo)為a,點(diǎn)B的橫坐標(biāo)為b,且a<b.
(1)若△AOC的面積為4,求k值;
(2)若a=1,b=k,當(dāng)AO=AB時(shí),試說明△AOB是等邊三角形;
(3)若OA=OB,證明:OC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 與△DEF 中,下列四個(gè)命題是真命題的個(gè)數(shù)共有( )
①如果A D, ,那么△ABC 與△DEF相似;
②如果A D,,那么△ABC 與△DEF相似;
③如果A D 90°,,那么△ABC 與△DEF相似;
④如果A D 90°, ,那么△ABC 與△DEF相似.
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形是由三個(gè)全等矩形拼成的,與、、、、分別交于點(diǎn)、、、、,設(shè),,的面積依次為、、,若,則的值為( )
A.6B.8C.10D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年9月17日世界人工智能大會(huì)在上海召開,人工智能的變革力在教育、制造等領(lǐng)域加速落地. 在某市舉辦的一次中學(xué)生機(jī)器人足球賽中,有四個(gè)代表隊(duì)進(jìn)入決賽,決賽中,每個(gè)隊(duì)分別與其它三個(gè)隊(duì)進(jìn)行主客場比賽各一場(即每個(gè)隊(duì)要進(jìn)行6場比賽),以下是積分表的一部分.
排名 | 代表隊(duì) | 場次 (場) | 勝 (場) | 平 (場) | 負(fù) (場) | 凈勝球 (個(gè)) | 進(jìn)球 (個(gè)) | 失球 (個(gè)) | 積分 (分) |
1 | A | 6 | 1 | 6 | 12 | 6 | 22 | ||
2 | B | 6 | 3 | 2 | 1 | 0 | 6 | 6 | 19 |
3 | C | 6 | 3 | 1 | 2 | 2 | 9 | 7 | 17 |
4 | D | 6 | 0 | 0 | 6 | m | 5 | 13 | 0 |
(說明:積分=勝場積分+平場積分+負(fù)場積分)
(1)D代表隊(duì)的凈勝球數(shù)m= ;
(2)本次決賽中,勝一場積 分,平一場積 分,負(fù)一場積 分;
(3)此次競賽的獎(jiǎng)金分配方案為:進(jìn)入決賽的每支代表隊(duì)都可以獲得參賽獎(jiǎng)金6000元;另外,在決賽期間,每勝一場可以再獲得獎(jiǎng)金2000元,每平一場再獲得獎(jiǎng)金1000元.
請根據(jù)表格提供的信息,求出冠軍A隊(duì)一共能獲得多少獎(jiǎng)金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣2,0)和B(l,0),與y軸交于點(diǎn)C.
(1)求拋物線的表達(dá)式;
(2)作射線AC,將射線AC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°交拋物線于另一點(diǎn)D,在射線AD上是否存在一點(diǎn)H,使△CHB的周長最小.若存在,求出點(diǎn)H的坐標(biāo);若不存在,請說明理由;
(3)在(2)的條件下,點(diǎn)Q為拋物線的頂點(diǎn),點(diǎn)P為射線AD上的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t,過點(diǎn)P作x軸的垂線l,垂足為E,點(diǎn)P從點(diǎn)A出發(fā)沿AD方向運(yùn)動(dòng),直線l隨之運(yùn)動(dòng),當(dāng)﹣2<t<1時(shí),直線l將四邊形ABCQ分割成左右兩部分,設(shè)在直線l左側(cè)部分的面積為S,求S關(guān)于t的函數(shù)表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com