如下圖,點P是半徑為5的⊙O內(nèi)一點,且OP=3,在過點P的所有⊙O的弦中,弦長為整數(shù)的弦的條數(shù)為

[  ]

A.2
B.3
C.4
D.5

答案:B
解析:

如圖,過點P作直徑AB,過點P作弦CDAB,連接OC

OC=5,CD=2PC

由勾股定理,得

CD=2PC=8.又AB=10,

∴過點P的弦長l的取值范圍為8l10

弦長l的整數(shù)解為8,9,103個.


提示:

在一個圓中,過一點的最長弦是經(jīng)過這一點的直徑,最短的弦是經(jīng)過這一點與直徑垂直的弦.知道這些,就可以利用垂徑定理來確定過點P的弦長的取值范圍.

要想求得弦長為整數(shù)的弦的條數(shù),就要先弄清最長弦與最短弦的弦長,確定出弦長的取值范圍.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.
精英家教網(wǎng)
問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關(guān)于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應(yīng)用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關(guān)于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是
 

(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內(nèi)一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年安徽省中考數(shù)學(xué)模擬試卷(十六)(解析版) 題型:解答題

幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關(guān)于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最。ú槐刈C明).
模型應(yīng)用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關(guān)于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內(nèi)一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年貴州省黔南州惠水縣斷杉中學(xué)中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關(guān)于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應(yīng)用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關(guān)于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內(nèi)一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省莆田市中考數(shù)學(xué)仿真模擬試卷(二)(解析版) 題型:解答題

(2009•漳州)幾何模型:
條件:如下圖,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關(guān)于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最小(不必證明).
模型應(yīng)用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關(guān)于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是______;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=45°,P是∠AOB內(nèi)一點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案