如圖,若AD∥CB,點(diǎn)E在AD上,點(diǎn)F在BC上,AF、BE分別平分∠BAD、∠ABC,且AF與BE交于點(diǎn)O,AO=OF嗎?說(shuō)明你的理由.

答案:
解析:

  解:AO=OF,理由如下:

  ∵AD∥BC

  ∴∠2=∠3

  又∵AF平分∠BAD

  ∴∠1=∠2

  ∴∠1=∠3

  ∴AB=BF

  又∵BE平分∠ABC

  ∴由等腰三角形三線合一的性質(zhì)可得

  AO=OF


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知:如圖,在⊙O中,弦AB與CD相交于點(diǎn)M.
(1)若AD=CB,求證:△ADM≌△CBM.
(2)若AB=CD,△ADM與△CBM是否全等,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長(zhǎng)度之比等于大線段AC與線段AB的長(zhǎng)度之比,即
CB
AC
=
AC
AB
=
5
-1
2
=0.61803398874989
.這種分割稱為黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn).類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點(diǎn)為腰的黃金分割點(diǎn).
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點(diǎn)D,請(qǐng)你說(shuō)明D為腰AB的黃金分割點(diǎn)的理由.
(2)若腰和上底相等,對(duì)角線和下底相等的等腰梯形叫作黃金梯形,其對(duì)角線的交點(diǎn)為對(duì)角線的黃金分割點(diǎn).如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說(shuō)明O為AC的黃金分割點(diǎn).
(3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對(duì)邊分別為a、b、c.若D是AB的黃金分割點(diǎn),那么a、b、c之間的數(shù)量關(guān)系是什么并證明你的結(jié)論.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,若ABCD是四邊形,請(qǐng)補(bǔ)充條件
AD∥BC、AD=CB,或AB與CD平行且相等或AB∥CD,AD∥BC或∠A+∠B=180°、∠A+∠D=180°
(寫一個(gè)即可),使四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知直線y=2x+2與y軸、x軸分別交于A、B兩點(diǎn),以B為直角頂點(diǎn)在第二象限作等腰Rt△ABC 
(1)求點(diǎn)C的坐標(biāo),并求出直線AC的關(guān)系式.
(2)如圖2,直線CB交y軸于E,在直線CB上取一點(diǎn)D,連接AD,若AD=AC,求證:BE=DE.
(3)如圖3,在(1)的條件下,直線AC交x軸于M,P(-
52
,k)是線段BC上一點(diǎn),在線段BM上是否存在一點(diǎn)N,使直線PN平分△BCM的面積?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案