【題目】如圖,已知拋物線,直線,當任取一值時,對應(yīng)的函數(shù)值分別 為,若,取中的較小值記為;若,記,例如:當時,,此時,下列判斷:
①當時,;
②當時,值越大,值越;
③使得大于2的值不存在;
④使得的值是或.
其中正確的是_______________________.
【答案】③④
【解析】
根據(jù)二次函數(shù)和一次函數(shù)的圖像與性質(zhì)即可得出答案.
由題可得,函數(shù)圖像如圖所示
∴當-1<x<0時,;當x=-1時,;當x<-1時,,故①錯誤;
由①可知,當x<0時,拋物線與直線的交點坐標為(-1,0)
結(jié)合圖示,可知,當-1<x<0時,M=,當x越大時,M越大;當x=-1時,M=;當x<-1時,M=,當x越大時,M越大,故②錯誤;
由以上分析可知,當x≥0時,,則M=,此時,故;當-1<x<0時,M=,解得0<M<2;當x≤-1時,M=,解得M≤0,故③正確;
由③可得M=1的情況有兩種:(1)當x≥0時,即,解得x=;(2)當-1<x<0時,2x+2=1,解得x=,故④正確;
故答案為③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種火爆的網(wǎng)紅電子產(chǎn)品,每件產(chǎn)品成本元、工廠將該產(chǎn)品進行網(wǎng)絡(luò)批發(fā),批發(fā)單價(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.
直接寫出與之間所滿足的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
若一次性批發(fā)量不超過件,當批發(fā)量為多少件時,工廠獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形如圖放置在平面直角坐標系中,為邊上的一個動點,過點作交邊于點,且,的長是方程的兩個實數(shù)根,且.
(1)設(shè),,求與的函數(shù)關(guān)系(不求的取值范圍);
(2)當為的中點時,求直線的解析式;
(3)在(2)的條件下,平面內(nèi)是否存在點,使得以,,,為頂點的四邊形為平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】宣和中學(xué)圖書館今日購進甲、乙兩種圖書,每本甲種圖書的進價比每本乙種圖書的進價高20元,花780元購進甲種圖書的數(shù)量與花540元購進乙種圖書的數(shù)量相同.
(1)求甲、乙兩種圖書每本的進價分別是多少元;
(2)宣和中學(xué)購進甲、乙兩種圖書共70本,總購書費用不超過3950元,則最多購進甲種圖書多少本.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級有1200名學(xué)生,在體育考試前隨機抽取部分學(xué)生進行跳繩測試,根據(jù)測試成績制作了下面兩個統(tǒng)計圖.請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次參加跳繩測試的學(xué)生人數(shù)為___________,圖①中的值為___________;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校九年級跳繩測試中得3分的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:是的高,且.
(1)如圖1,求證:;
(2)如圖2,點E在AD上,連接,將沿折疊得到,與相交于點,若BE=BC,求的大;
(3)如圖3,在(2)的條件下,連接,過點作,交的延長線于點,若,,求線段的長.
圖1. 圖2. 圖3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請結(jié)合題意,完成本題的解答:
(Ⅰ)解不等式①,得______;
(Ⅱ)解不等式②,得______;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】著名數(shù)學(xué)教育家波利亞曾說:“對一個數(shù)學(xué)問題,改變它的形式,變換它的結(jié)構(gòu),直到發(fā)現(xiàn)有價值的東西,這是數(shù)學(xué)解題的一個重要原則.”
閱讀下列兩則材料,回答問題
材料一:平方運算和開方運算是互逆運算,如:a2±2ab+b2=(a±b)2,那么=|a±b|,那么如何將雙重二次根式(a>0,b>0,a±2>0)化簡呢?如能找到兩個數(shù)m,n(m>0,n>0),使得(2+()2=a即m+n=a,且使即mn=b,那么a±2=()2+()2±2=(2
∴==|,雙重二次根式得以化簡.
例如化簡:.∵3=1+2且2=1×2,∴3+2=()2+()2+2,
∴==1+.
材料二:在直角坐標系xoy中,對于點P(x,y)和Q(x,y′)出如下定義:若y′=,則稱點Q為點P的“橫負縱變點”例如,點(3,2)的“橫負縱變點”為(3,2),點(﹣2,5)的“橫負縱變點”為(﹣2,﹣5)
問題:
(1)請直接寫出點(﹣3,﹣2)的“橫負縱變點”為 ;化簡= ;
(2)點M為一次函數(shù)y=﹣x+1圖象上的點,M′為點M的橫負縱變點,已知N(1,1),若M′N=,求點M的坐標;
(3)已知b為常數(shù)且1≤b≤2,點P在函數(shù)y=﹣x2+16(+)(﹣7≤x≤a)的圖象上,其“橫負縱變點”的縱坐標y′的取值范圍是﹣32<y′≤32,若a為偶數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校綜合實踐活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB為3米,臺階AC的坡度為1:(即AB:BC=1:),且B、C、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com