【題目】如圖,已知A、O、B三點在同一條直線上,OD平分∠AOC,OE平分∠BOC.

(1)若∠BOC=62°,求∠DOE的度數(shù);
(2)若∠BOC=a°,求∠DOE的度數(shù);
(3)圖中是否有互余的角?若有請寫出所有互余的角.

【答案】
(1)解:∵OD平分∠AOC,OE平分∠BOC,
∴∠DOC= ∠AOC,∠COE= ∠BOC
∴∠DOE=∠DOC+∠COE= (∠BOC+∠COA)= ×(62°+180°﹣62°)=90°
(2)解:∠DOE═ (∠BOC+∠COA)= ×(a°+180°﹣a°)=90°
(3)解:∠DOA與∠COE互余;∠DOA與∠BOE互余;∠DOC與∠COE互余;∠DOC與∠BOE互余 。
【解析】(1)根據(jù)角平分線的定義得出∠DOC= ∠AOC,∠COE= ∠BOC ,從而∠DOE=∠DOC+∠COE= (∠BOC+∠COA)= ×(62°+180°﹣62°)=90° ;
(2)根據(jù)角平分線的定義得出∠DOC= ∠AOC,∠COE= ∠BOC ,從而∠DOE=∠DOC+∠COE= (∠BOC+∠COA)= ×(α+180°﹣α)=90° ;
(3)根據(jù)互為余角的定義,只要相加等于90°的兩個角就是互為余角,從而得出∠DOA與∠COE互余;∠DOA與∠BOE互余;∠DOC與∠COE互余;∠DOC與∠BOE互余
【考點精析】認(rèn)真審題,首先需要了解角的平分線(從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線),還要掌握余角和補(bǔ)角的特征(互余、互補(bǔ)是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān))的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個登山愛好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動.
(1)1月1日甲與乙同時開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,結(jié)果甲比乙早15分鐘到達(dá)頂峰.求甲的平均攀登速度是每分鐘多少米?
(2)1月6日甲與丙去攀登另一座h米高的山,甲保持第(1)問中的速度不變,比丙晚出發(fā)0.5小時,結(jié)果兩人同時到達(dá)頂峰,問甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的一個角是100°,其底角是________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x=2時,代數(shù)式ax3+bx+1的值為6,那么當(dāng)x=-2時,這個代數(shù)式的值是(

A. 1 B. -4 C. 6 D. -5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與坐標(biāo)軸分別交于點A(0,8)、B(8,0)和點E,動點C從原點O開始沿OA方向以每秒1個單位長度移動,動點D從點B開始沿BO方向以每秒1個單位長度移動,動點C、D同時出發(fā),當(dāng)動點D到達(dá)原點O時,點C、D停止運動.

(1)直接寫出拋物線的解析式: ;

(2)求△CED的面積S與D點運動時間t的函數(shù)解析式;當(dāng)t為何值時,△CED的面積最大?最大面積是多少?

(3)當(dāng)△CED的面積最大時,在拋物線上是否存在點P(點E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】情景:試根據(jù)圖中信息,解答下列問題:

(1)購買6根跳繩需多少元,購買12根跳繩需多少元.
(2)小紅比小明多買2根,付款時小紅反而比小明少5元,你認(rèn)為有這種可能嗎?若有,請求出小紅購買跳繩的根數(shù);若沒有請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,AOM的面積為3.

(1)求反比例函數(shù)的解析式;

(2)設(shè)點B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD,AD∥BC,∠B=90°,AD=6,AB=4,BC=9.

(1)求CD的長為
(2)點P從點B出發(fā),以每秒1個單位的速度沿著邊BC向點C運動,連接DP.設(shè)點P運動的時間為t秒,則當(dāng)t為何值時,△PDC為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)環(huán)境保護(hù)意識,6月5日“世界環(huán)境日”當(dāng)天,在環(huán)保局工作人員指導(dǎo)下,若干名“環(huán)保小衛(wèi)士”組成的“控制噪聲污染”課題學(xué)習(xí)研究小組,抽樣調(diào)查了全市40個噪聲測量點在某時刻的噪聲聲級(單位:dB),將調(diào)查的數(shù)據(jù)進(jìn)行處理(設(shè)所測數(shù)據(jù)是正整數(shù)),得不完整頻數(shù)分布表和頻數(shù)分布直方圖如下:

根據(jù)表中提供的信息解答下列問題:

(1)頻數(shù)分布表中的a =________,b=________,c =_________;

(2)請補(bǔ)全頻數(shù)分布直方圖;

(3)如果全市共有200個測量點,那么在這一時刻噪聲聲級小于75dB的測量點約有多少個?

查看答案和解析>>

同步練習(xí)冊答案