【題目】如圖,△ABC中,∠C=90°,AC=8,BC=6,E,F分別在邊AC,BC,若以EF為直徑作圓經(jīng)過AB上某點D,則EF長的取值范圍為_____.
【答案】4.8≤EF≤10
【解析】
根據(jù)已知條件得到△ECF是直角三角形,推出點C在以EF為直徑的圓上,設以EF為直徑的圓的圓心為O,當⊙O于AB相切時,以EF為直徑的圓經(jīng)過AB上的唯一一點D,連接CD,則CD⊥AB,且CD過圓心,求得EF=CD==4.8,當⊙O經(jīng)過A,B時,則EF=AB=10,于是得到結(jié)論.
∵∠C=90°,E,F分別在邊AC,BC上,
∴△ECF是直角三角形,
∴點C在以EF為直徑的圓上,
設以EF為直徑的圓的圓心為O,
當⊙O于AB相切時,以EF為直徑的圓經(jīng)過AB上的唯一一點D,
連接CD,則CD⊥AB,且CD過圓心,
∴EF=CD,
∵∠C=90°,AC=8,BC=6,
∴AB=10,
∴EF=CD==4.8,
當⊙O經(jīng)過A,B時,則EF=AB=10,
故EF長的取值范圍為:4.8≤EF≤10.
故答案為:4.8≤EF≤10.
科目:初中數(shù)學 來源: 題型:
【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣體,當溫度不變時,氣球內(nèi)氣體的氣壓P(單位:千帕)隨氣體體積V(單位:立方米)的變化而變化,P隨V的變化情況如下表所示.
P | 1.5 | 2 | 2.5 | 3 | 4 | … |
V | 64 | 48 | 38.4 | 32 | 24 | … |
(1)寫出符合表格數(shù)據(jù)的P關(guān)于V的函數(shù)表達式 ;
(2)當氣球的體積為20立方米時,氣球內(nèi)氣體的氣壓P為多少千帕?
(3)當氣球內(nèi)的氣壓大于144千帕時,氣球?qū)⒈ǎ勒眨?/span>1)中的函數(shù)表達式,基于安全考慮,氣球的體積至少為多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校對七年級300名學生進行了教學質(zhì)量監(jiān)測(滿分100分),現(xiàn)從中隨機抽取部分學生的成績進行整理,并繪制成如圖不完整的統(tǒng)計表和統(tǒng)計圖:
注:60分以下為“不及格”,60~69分為“及格”,70~79分為“良好”,80分及以上為“優(yōu)秀”
請根據(jù)以上信息回答下列問題:
(1)補全統(tǒng)計表和統(tǒng)計圖;
(2)若用扇形統(tǒng)計圖表示統(tǒng)計結(jié)果,則“良好”所對應扇形的圓心角為多少度?
(3)請估計該校七年級本次監(jiān)測成績?yōu)?/span>70分及以上的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面所示各圖是在同一直角坐標系內(nèi),二次函數(shù)y=+(a+c)x+c與一次函數(shù)y=ax+c的大致圖象.正確的( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出:
有n個環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,當只斷開其中的k(k<n)個環(huán),要求第一次取走一個環(huán),以后每次都只能比前一次多得一個環(huán),則最多能得到的環(huán)數(shù)n是多少呢?
問題探究:
為了找出n與k之間的關(guān)系,我們運用一般問題特殊化的方法,從特殊到一般,歸納出解決問題的方法.
探究一:k=1,即斷開鏈條其中的1個環(huán),最多能得到幾個環(huán)呢?
當n=1,2,3時,斷開任何一個環(huán),都能滿足要求,分次取走;
當n=4時,斷開第二個環(huán),如圖①,第一次取走1環(huán);第二次退回1環(huán)換取2環(huán),得2個環(huán);第三次再取回1環(huán),得3個環(huán);第四次再取另1環(huán),得4個環(huán),按要求分4次取走.
當n=5,6,7時,如圖②,圖③,圖④方式斷開,可以用類似上面的方法,按要求分5,6,7次取走.
當n=8時,如圖⑤,無論斷開哪個環(huán),都不可能按要求分次取走.
所以,當斷開1個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成3部分,分別是1環(huán)、2環(huán)和4環(huán),最多能得到7個環(huán).
即當k=1時,最多能得到的環(huán)數(shù)n=1+2+4=1+2×3=1+2×(22-1)=7.
探究二:k=2,即斷開鏈條其中的2個環(huán),最多能得到幾個環(huán)呢?
從得到更多環(huán)數(shù)的角度考慮,按圖⑥方式斷開,把鏈條分成5部分,按照類似探究一的方法,按要求分1,2,…23次取走.
所以,當斷開2個環(huán)時,把鏈條分成5部分,分別是1環(huán)、1環(huán)、3環(huán)、6環(huán)、12環(huán),最多能得到23個環(huán).
即當k=2時,最多能得到的環(huán)數(shù)n=1+1+3+6+12=2+3×7=2+3×(23-1)=23.
探究三:k=3,即斷開鏈條其中的3個環(huán),最多能得到幾個環(huán)呢?
從得到更多環(huán)數(shù)的角度考慮,按圖⑦方式斷開,把鏈條分成7部分,按照類似前面探究的方法,按要求分1,2,…63次取走.
所以,當斷開3個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成7部分,分別是1環(huán)、1環(huán)、1環(huán)、4環(huán)、8環(huán)、16環(huán)、32環(huán),最多能得到63個環(huán).
即當k=3時,最多能得到的環(huán)數(shù)n=1+1+1+4+8+16+32=3+4×15=3+4×(24-1)=63.
探究四:k=4,即斷開鏈條其中的4個環(huán),最多能得到幾個環(huán)呢?
按照類似前面探究的方法,當斷開4個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,分別為 ,最多能得到的環(huán)數(shù)n= .請畫出如圖⑥的示意圖.
模型建立:
有n個環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,斷開其中的k(k<n)個環(huán),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,
分別是:1、1、1……1、k+1、 、……、 ,最多能得到的環(huán)數(shù)n = .
實際應用:
一天一位財主對雇工說:“你給我做兩年的工,我每天付給你一個銀環(huán).不過,我用一串環(huán)環(huán)相扣的線型銀鏈付你工錢,但你最多只能斷開銀鏈中的6個環(huán).如果你無法做到每天取走一個環(huán),那么你就得不到這兩年的工錢,如果銀鏈還有剩余,全部歸你!你愿意嗎?”
聰明的你是否可以運用本題的方法通過計算幫助雇工解決這個難題,雇工最多能得到總環(huán)數(shù)為多少環(huán)的銀鏈?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,D是⊙O上一點,且弧CB=弧CD,CE⊥DA交DA的延長線于點E.
(1)求證:∠CAB=∠CAE;
(2)求證:CE是⊙O的切線;
(3)若AE=1,BD=4,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在反比例函數(shù)y=(x>0)的圖象上,點B在反比例函數(shù)y=(x>0)的圖象上,AB∥x軸,BC⊥x軸,垂足為C,連接AC,若△ABC的面積為2,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)
(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,對角線AC與BD相交于點O,且對角線AC平分∠BCD,∠ACD=30°,BD=6.
(1)求證:△BCD是等邊三角形;(2)求AC的長(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com