【題目】如圖,在平行四邊形ABCD中,AD>AB.
(1)作∠BAD的平分線交BC于點E,在AD邊上截取AF=AB,連接EF(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)判斷四邊形ABEF的形狀,并說明理由.
【答案】(1)見解析;(2)四邊形ABEF是菱形;理由見解析.
【解析】
(1)由角平分線的作法容易得出結果,在AD上截取AF=AB,連接EF;畫出圖形即可;
(2)由平行四邊形的性質(zhì)和角平分線得出∠BAE=∠AEB,證出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出結論.
(1)如圖所示:
(2)四邊形ABEF是菱形;理由如下:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴BE=AB,
由(1)得:AF=AB,
∴BE=AF,
又∵BE∥AF,
∴四邊形ABEF是平行四邊形,
∵AF=AB,
∴四邊形ABEF是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=12,點E為BC的中點,以CD為直徑作半圓CFD,點F為半圓的中點,連接AF,EF,圖中陰影部分的面積是( )
A. 18+36π B. 24+18π C. 18+18π D. 12+18π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑做⊙O交BC于點D,過點D作⊙O的切線,交AB于點E,交CA的延長線于點F.
(1)求證:FE⊥AB;
(2)填空:當EF=4,時,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MAN=60°,若△ABC的頂點B在射線AM上,且AB=2,點C在射線AN上運動,當△ABC是銳角三角形時,BC的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=4,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△ABP沿直線AP折疊,使點B落到點B′處;作∠B′PC的角平分線交CD于點E.設BP=x,CE=y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生對排球、羽毛球、足球、籃球(以下分別用A、B、C、D表示)這四種球類運動的喜好情況.對全體學生進行了抽樣調(diào)查(每位學生只能選一項最喜歡的運動),并將調(diào)查情況繪制成如下兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息回答下面問題:
(1)本次參加抽樣調(diào)查的學生有 人.
(2)補全兩幅統(tǒng)計圖.
(3)若從本次參加抽樣調(diào)查的學生中任取1人,則此人喜歡哪類球的概率最大?求其概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有個填寫運算符號的游戲:在“”中的每個□內(nèi),填入中的某一個(可重復使用),然后計算結果.
(1)計算:;
(2)若請推算□內(nèi)的符號;
(3)在“”的□內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是BC邊上的一個動點,沿著AE翻折矩形,使點B落在點F處若AB=3,BC=AB,解答下列問題:
(1)在點E從點B運動到點C的過程中,求點F運動的路徑長;
(2)當點E是BC的中點時,試判斷FC與AE的位置關系,并說明你的理由;
(3)當點F在矩形ABCD內(nèi)部且DF=CD時,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com