如圖,在平行四邊形ABCD中,∠ABC=45°,E、F分別在CD和BC的延長線上,AE∥BD,∠EFC=30°, AB=2.
求CF的長.
2+2

試題分析:易證四邊形ABDE是平行四邊形,則AB=DE=CD,過點(diǎn)E作EH⊥BF于點(diǎn)H,解等腰直角三角形CEH得EH=CH=2,解FH=2,從而得CF=2+2
試題解析:∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=DC.
∵AE∥BD,∴四邊形ABDE是平行四邊形.
∴AB=DE=CD,即D為CE中點(diǎn).
∵AB=2,∴CE=4.
又∵AB∥CD,∴∠ECF=∠ABC=45°.
如圖,過點(diǎn)E作EH⊥BF于點(diǎn)H,
∵CE=4,∠ECF=45°,∴EH=CH=2.
∵∠EFC=30°,∴ FH=2,∴ CF=2+2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

圖1中的中國結(jié)掛件是由四個(gè)相同的菱形在頂點(diǎn)處依次串聯(lián)而成,每相鄰兩個(gè)菱形均成30°的夾角,示意圖如圖2.在圖2中,每個(gè)菱形的邊長為10cm,銳角為60°.
(1)連接CD,EB,猜想它們的位置關(guān)系并加以證明;
(2)求A,B兩點(diǎn)之間的距離(結(jié)果取整數(shù),可以使用計(jì)算器)
(參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,現(xiàn)有一張邊長為4的正方形紙片,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長是2,E是AB的中點(diǎn),延長BC到點(diǎn)F使CF=AE.
(1)求證:
(2)把向左平移,使重合,得,于點(diǎn).請(qǐng)判斷AH與ED的位置關(guān)系,并說明理由.
(3)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知:四邊形ABCD的面積為1. 如圖1,取四邊形ABCD各邊中點(diǎn),則圖中陰影部分的面積為       ;如圖2,取四邊形ABCD各邊三等分點(diǎn),則圖中陰影部分的面積為       ;如圖3,取四邊形ABCD各邊的n(n為大于1的整數(shù))等分點(diǎn),則圖中陰影部分的面積為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知平行四邊形的三個(gè)頂點(diǎn)坐標(biāo)分別為(-1,0)(0,2)(2,0),則在第四象限的第四個(gè)頂點(diǎn)
的坐標(biāo)為___________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將下列圖形繞其對(duì)角線的交點(diǎn)逆時(shí)針旋轉(zhuǎn)900,所得圖形一定與原圖形重合的是
A.正方形B.矩形C.菱形D.平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,菱形ABCD的周長是20,對(duì)角線AC,BD相交于點(diǎn)O,若BD=6,則菱形ABCD的面積是(   )
A.6B.12C.24D.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD中,AB=4,BC=4,以BC的中點(diǎn)E為圓心,以AB長為半徑作與邊AB、CD交于M、N,與AD相切于H,則圖中陰影部分的面積是         ;

查看答案和解析>>

同步練習(xí)冊(cè)答案