【題目】甲、乙兩公司為“見義勇為基金會”各捐款3000元.已知甲公司的人數(shù)比乙公司的人數(shù)多20%,乙公司比甲公司人均多捐20元.請你根據(jù)上述信息,就這兩個公司的“人數(shù)”或“人均捐款”提出一個用分式方程解決的題,并寫出解題過程.
【答案】問:甲、乙兩公司各有多少名員工?;見解析;甲公司有30名員工,乙公司有25名員工
【解析】
問:甲、乙兩公司各有多少名員工?設(shè)乙公司有x名員工,則甲公司有1.2x名員工,根據(jù)人均捐款錢數(shù)=捐款總錢數(shù)÷人數(shù)結(jié)合乙公司比甲公司人均多捐20元,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論.
解:問:甲、乙兩公司各有多少名員工?
設(shè)乙公司有x名員工,則甲公司有1.2x名員工,
依題意,得:-=20,
解得:x=25,
經(jīng)檢驗,x=25是原分式方程的解,且符合題意,
∴1.2x=30
答:甲公司有30名員工,乙公司有25名員工.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個長方形(如圖乙),根據(jù)兩個圖形中陰影部分的面積相等,可以驗證( 。
A. (a+2b)(a﹣b)=a2+ab﹣2b2
B. a2﹣b2=(a+b)(a﹣b)
C. (a+b)2=a2+2ab+b2
D. (a﹣b)2=a2﹣2ab+b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線頂點D(-1,-4),且過點C(0,-3).
(1)求此二次函數(shù)的解析式;
(2)拋物線與x軸交于點A、B,在拋物線上存在一點P使△ABP的面積為10,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結(jié)論: ① 兩函數(shù)圖象的交點A的坐標(biāo)為(3 ,3 ) ② 當(dāng) x > 3 時, ③ 當(dāng) x =1時, BC = 8
④ 當(dāng) x 逐漸增大時, yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結(jié)論的序號是_ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖中的圖象(折線ABCDE)描述了一汽車在某一直路上的行駛過程中,汽車離出發(fā)地的距離S(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法:
①汽車在途中停留了0.5小時;
②汽車行駛3小時后離出發(fā)地最遠;
③汽車共行駛了120千米;
④汽車返回時的速度是80千米/小時.
其中正確的說法共有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點D是等邊△ABC(即三條邊都相等,三個角都相等的三角形)邊BA上任意一點(點D與點B不重合),連接DC.
(1)如圖1,以DC為邊在BC上方作等邊△DCF,連接AF,猜想線段AF與BD的數(shù)量關(guān)系?請說明理由.
(2)如圖2,若以DC為邊在BC上方、下方分別作等邊△DCF和等邊△DCF′,連接AF、BF′,探究AF、BF′與AB有何數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,AE平分交BC于E,,則下面的結(jié)論:①是等邊三角形;②;③;④,其中正確結(jié)論有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)、如圖①,對△ABC作變換[50°,]得△AB′C′,則S△AB′C′:S△ABC= ;直線BC與直線B′C′所夾的銳角為 度;
(2)、如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB'C',使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)、如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙半徑為, 是⊙的直徑,點為延長線上一點,動點從點出發(fā)以的速度沿方向運動,同時,動點從點出發(fā)以的速度沿方向運動,當(dāng)兩點相遇時都停止運動.過點作的垂線,與⊙分別交于點、,設(shè)點的運動時間為.
()當(dāng)四邊形是正方形時, __________ , __________ .
()當(dāng)四邊形是菱形且時,求內(nèi)切圓的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com