【題目】如圖,在ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,EBDCD,過(guò)點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F

1)求證:DFAC;

2)若⊙O的半徑為2CF1,求的長(zhǎng)(結(jié)果保留π).

【答案】(1)詳見(jiàn)解析;(2)

【解析】

1)連接OD,由切線的性質(zhì)即可得出∠ODF=90°,再由BD=CD,OA=OB可得出ODABC的中位線,根據(jù)三角形中位線的性質(zhì)即可得出,根據(jù)平行線的性質(zhì)即可得出∠CFD=ODF=90°,從而證出DFAC

2)根據(jù)圓周角定理得出BEAC,證得BEDF,即可根據(jù)三角形相似求得EC=2,根據(jù)三角形中位線的性質(zhì)得出AC=4,即可得出AE=EC,進(jìn)一步證得ABC是等邊三角形,即可得出∠BOD=60°,根據(jù)弧長(zhǎng)公式即可得出結(jié)論.

1)證明:連接OD,如圖所示.

DF是⊙O的切線,D為切點(diǎn),

ODDF,

∴∠ODF90°

BDCD,OAOB,

ODABC的中位線,

ODAC,

∴∠CFD=∠ODF90°

DFAC

2)連接BE,

AB是直徑,

BEAC,

DFAC

,

FC1

EC2,

ODAC2,

AC4,

AEEC2,

ABBC

ABAC4,

ABBCAC,

∴△ABC是等邊三角形,

∴∠BAC60°,

ODAC

∴∠BOD=∠BAC60°,

的長(zhǎng):

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AB⊙O的直徑,PA⊙O相切于點(diǎn)ABP⊙O相交于點(diǎn)D,C⊙O上的一點(diǎn),分別連接CB、CD,∠BCD60°.

(1)求∠ABD的度數(shù);

(2)AB6,求PD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)E、F分別是ABCD的邊BC、AD的中點(diǎn).

1)求證:四邊形AECF是平行四邊形;

2)若BC10,∠BAC90°,求AECF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yax2+bx+ca0)的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4acb20;②2ab0;③a+b+c0點(diǎn)Mx1,y1)、Nx2,y2)在拋物線上,若x1x2,則y1y2,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,頂點(diǎn)坐標(biāo)為(2,﹣1)的拋物線yax2+bx+ca0)與y軸交于點(diǎn)C0,3),與x軸交于A、B兩點(diǎn).

1)求拋物線的表達(dá)式;

2)設(shè)拋物線的對(duì)稱軸與直線BC交于點(diǎn)D,連接ACAD,求△ACD的面積;

3)點(diǎn)E為直線BC上一動(dòng)點(diǎn),過(guò)點(diǎn)Ey軸的平行線EF,與拋物線交于點(diǎn)F.問(wèn)是否存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購(gòu)買乙種樹苗的棵數(shù)恰好與用360元購(gòu)買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?

(2)在實(shí)際幫扶中,他們決定再次購(gòu)買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購(gòu)買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購(gòu)買兩種樹苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,矩形AOBC的頂點(diǎn)C的坐標(biāo)是(6,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿線段AC運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿線段BO運(yùn)動(dòng),當(dāng)Q到達(dá)O點(diǎn)時(shí),P,Q同時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間是t秒(t0).

1)如圖1,當(dāng)時(shí)間t  秒時(shí),四邊形APQO是矩形;

2)如圖2,在P,Q運(yùn)動(dòng)過(guò)程中,當(dāng)PQ5時(shí),時(shí)間t等于  秒;

3)如圖3,當(dāng)PQ運(yùn)動(dòng)到圖中位置時(shí),將矩形沿PQ折疊,點(diǎn)A,O的對(duì)應(yīng)點(diǎn)分別是DE,連接OPOE,此時(shí)∠POE45°,連接PE,求直線OE的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線與矩形AOBC的邊ACBC分別交于點(diǎn)E,F,E3,4),且F8,)為拋物線的頂點(diǎn),將CEF沿著EF翻折,點(diǎn)C恰好落在邊OB上的點(diǎn)D處.

1)求該拋物線的解析式;

2)點(diǎn)P為線段ED上一動(dòng)點(diǎn),連接PF,當(dāng)PF平分∠EFD時(shí),求PD的長(zhǎng)度;

3)四邊形AODE1個(gè)單位/秒的速度沿著x軸向右運(yùn)動(dòng),當(dāng)點(diǎn)E與點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的四邊形AODEDEF重合部分的面積為S,請(qǐng)直接寫出St的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y2x+2y軸交于A點(diǎn),與反比例函數(shù)yx0)的圖象交于點(diǎn)M,過(guò)MMHx軸于點(diǎn)H,且tanAHO2

1)求H點(diǎn)的坐標(biāo)及k的值;

2)點(diǎn)Py軸上,使△AMP是以AM為腰的等腰三角形,請(qǐng)直接寫出所有滿足條件的P點(diǎn)坐標(biāo);

3)點(diǎn)Na,1)是反比例函數(shù)yx0)圖象上的點(diǎn),點(diǎn)Qm,0)是x軸上的動(dòng)點(diǎn),當(dāng)△MNQ的面積為3時(shí),請(qǐng)求出所有滿足條件的m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案