【題目】如圖,由長(zhǎng)度為1個(gè)單位的若干小正方形組成的網(wǎng)格圖中,點(diǎn)A、BC在小正方形的頂點(diǎn)上.

1)在圖中畫出與ABC關(guān)于直線l成軸對(duì)稱的AB′C′;

2)三角形ABC的面積為  

3)以AC為邊作與ABC全等的三角形(只要作出一個(gè)符合條件的三角形即可);

4)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短.

【答案】1畫圖見解析;(2SABC=3;(3作圖見解析;4作圖見解析

【解析】(1)分別作各點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn),再順次連接即可;(2)利用矩形的面積減去三個(gè)頂點(diǎn)上三角形的面積即可;(3)根據(jù)勾股定理找出圖形即可;(4)連接B′C交直線l于點(diǎn)P,則P點(diǎn)即為所求.

解:(1)如圖,△AB′C′即為所求;

(2)S△ABC=2×4﹣×2×1﹣×1×4﹣×2×2=8﹣1﹣2﹣2=3.

故答案為:3;

(3)如圖,△AB1C,△AB2C,△AB3C即為所求.

故答案為:3;

(4)如圖,P點(diǎn)即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)y=(m﹣1)x+m2﹣1的圖象通過原點(diǎn),則m的值為( )
A.m=﹣1
B.m=1
C.m=±1
D.m≠1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,從①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任選兩個(gè)使四邊形ABCD為平行四邊形的選法有( 。
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面上一點(diǎn)PO上一點(diǎn)的距離最長(zhǎng)為6cm,最短為2cm,則O的半徑為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一螞蟻從原點(diǎn)O出發(fā),按向上、向右、向下、向右的方向依次不斷移動(dòng),每次移動(dòng)1個(gè)單位.其行走路線如下圖所示.

1)填寫下列各點(diǎn)的坐標(biāo):A4 , ),A8 , ;

2)點(diǎn)A4n-1的坐標(biāo)(n是正整數(shù))為( ,;

3)指出螞蟻從點(diǎn)A2015到點(diǎn)A2016的移動(dòng)方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C為ABD外接圓上的一動(dòng)點(diǎn)(點(diǎn)C不在上,且不與點(diǎn)B,D重合),ACB=ABD=45°

(1)求證:BD是該外接圓的直徑;

(2)連結(jié)CD,求證:AC=BC+CD;

(3)若ABC關(guān)于直線AB的對(duì)稱圖形為ABM,連接DM,試探究,三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正整數(shù)1,2,3,4,…,排列成如圖1所示的一個(gè)表,從上到下分別稱為第1行、第2行、…,從左到右分別稱為第1列、第2列、….用圖2所示的方框在圖1中框住16個(gè)數(shù),把其中沒有被陰影覆蓋的四個(gè)數(shù)分別記為、、. 設(shè).

1) (2

1在圖1中,2017排在第_________行第_________列;

2的值是否為定值?如果是,請(qǐng)求出它的值;如果不是,請(qǐng)說明理由;

3將圖1中的奇數(shù)都改為原數(shù)的相反數(shù),偶數(shù)不變.

①設(shè)此時(shí)圖1中排在第行第列的數(shù)(、都是正整數(shù))為,請(qǐng)用含 的式子表示;

②此時(shí)的值能否為3918?如果能,請(qǐng)求出所表示的數(shù);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用放大鏡看一個(gè)三角形,一條邊由原來的1 cm變?yōu)?/span>5 cm,那么看到的圖形的高是原來的( )

A. 5 B. 15 C. 25 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為半圓O的直徑,C為半圓O上一點(diǎn),連接AC,BC,過點(diǎn)O作OD⊥AC于點(diǎn)D,過點(diǎn)A作半圓O的切線交OD的延長(zhǎng)線于點(diǎn)E,連接BD并延長(zhǎng)交AE于點(diǎn)F.

(1)求證:AEBC=ADAB;

(2)若半圓O的直徑為10,sin∠BAC=,求AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案