【題目】一列快車由甲地開往乙地,一列慢車由乙地開往甲地,兩車同時(shí)出發(fā),勻速運(yùn)動(dòng).快車離乙地的路程與行駛的時(shí)間之間的函數(shù)關(guān)系,如圖中線段AB所示.慢車離乙地的路程與行駛的時(shí)間之間的函數(shù)關(guān)系,如圖中線段OC所示.根據(jù)圖象進(jìn)行以下研究.

快車的速度是________,慢車的速度是________;

ABOC的函數(shù)關(guān)系式.

何時(shí)快車離乙地的距離大于慢車離乙地的距離?

【答案】1150,75;(2;(3)當(dāng)時(shí),快車離乙地的距離大于慢車離乙地的距離

【解析】

(1)根據(jù)圖象,快車行駛完全程450米需要3小時(shí)可求得快車速度,慢車行駛完全程450米需要6小時(shí)可求得慢車速度;

(2)利用待定系數(shù)法分別求解;

3)根據(jù)圖象兩車相對(duì)位置,列出不等式求解即可.

1)快車的速度為:450÷3=150,

慢車的速度為:450÷6=75;

設(shè)AB的解析式為OC的解析式為,由題意,得

解得:

AB的解析式為OC的解析式為,

由題意,當(dāng)時(shí),

解得:

答:當(dāng)時(shí),快車離乙地的距離大于慢車離乙地的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著“一帶一路”的進(jìn)一歩推進(jìn),我國瓷器(“china”)更為“一帶一路”沿踐人民所推崇,一外國商戶準(zhǔn)這一商機(jī),向我國一瓷器經(jīng)銷商咨詢工藝品茶具,得到如下信息:

(1)每個(gè)茶壺的批發(fā)價(jià)比每個(gè)茶杯多120元;

(2)一套茶具包括一個(gè)茶壺與四個(gè)茶杯;

(3)4套茶具的批發(fā)價(jià)為1280元.

根據(jù)以上僖息:

(1)求每個(gè)茶壺與每個(gè)茶杯的批發(fā)價(jià);

(2)若該商戶購進(jìn)茶杯的數(shù)量是茶壺?cái)?shù)量的5倍還多18個(gè),并且茶壺和茶杯的總數(shù)不超過320個(gè),該商戶計(jì)劃將一半的茶具按每套500元成套銷售,其余按每個(gè)茶壺300元,每個(gè)茶杯80元零售.沒核商戶購進(jìn)茶壺m個(gè).

①試用含m的關(guān)系式表示出該商戶計(jì)劃獲取的利潤;

②請(qǐng)幫助他設(shè)計(jì)一種獲取利潤最大的方案,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索:如圖1,在中,.求證:;

發(fā)現(xiàn):直角三角形中,如果有一個(gè)銳角等于,那么這個(gè)角所對(duì)的直角邊等于斜邊的_______

應(yīng)用:如圖2,在中,,,點(diǎn)從點(diǎn)出發(fā)沿方向以秒的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿方向以秒的速度向點(diǎn)勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間是秒().過點(diǎn)于點(diǎn),連接

1)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值;如果不能,請(qǐng)說明理由;

2)當(dāng)為何值時(shí),為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決下列兩個(gè)問題:

1)如圖1,在ABC中,AB3AC4,BC5EF垂直且平分BC.點(diǎn)P在直線EF上,直接寫出PA+PB的最小值,并在圖中標(biāo)出當(dāng)PA+PB取最小值時(shí)點(diǎn)P的位置;

解:PA+PB的最小值為   

2)如圖2.點(diǎn)M、N在∠BAC的內(nèi)部,請(qǐng)?jiān)凇?/span>BAC的內(nèi)部求作一點(diǎn)P,使得點(diǎn)P到∠BAC兩邊的距離相等,且使PMPN.(尺規(guī)作圖,保留作圖痕跡,無需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)PQ分別是邊長為4cm的等邊三角形ABC的邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s

1)連接AQ、CP交于點(diǎn)M,則在P,Q運(yùn)動(dòng)的過程中,證明;

2會(huì)發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);

3PQ運(yùn)動(dòng)幾秒時(shí),是直角三角形?

4)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則變化嗎?若變化說明理由,若不變,則求出它的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并解決有關(guān)問題:

我們知道,|m|= .現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對(duì)值的代

數(shù)式,如化簡代數(shù)式|m+1|+|m2|時(shí),可令 m+1=0 m2=0,分別求得 m=1m=2(稱﹣1,2 分別為|m+1|與|m2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi), 零點(diǎn)值 m=1 m=2 可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下 3 種情況:

1m<﹣1;(2)﹣1m2;(3m2.從而化簡代數(shù)式|m+1|+|m2| 可分以下 3 種情況:

1)當(dāng) m<﹣1 時(shí),原式=﹣(m+1)﹣(m2=2m+1

2)當(dāng)﹣1m2 時(shí),原式=m+1﹣(m2=3

3)當(dāng) m2 時(shí),原式=m+1+m2=2m1

綜上討論,原式=

通過以上閱讀,請(qǐng)你解決以下問題:

1)分別求出|x5|和|x4|的零點(diǎn)值;

2)化簡代數(shù)式|x5|+|x4|;

3)求代數(shù)式|x5|+|x4|的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備添置一批計(jì)算機(jī).

方案1:到商家直接購買,每臺(tái)需要7000元;

方案2:學(xué)校買零部件組裝,每臺(tái)需要6000元,另外需要支付安裝工工資等其它費(fèi)用合計(jì)3000元.設(shè)學(xué)校需要計(jì)算機(jī)x臺(tái),方案1與方案2的費(fèi)用分別為元.

分別寫出、的函數(shù)關(guān)系式;

當(dāng)學(xué)校添置多少臺(tái)計(jì)算機(jī)時(shí),兩種方案的費(fèi)用相同?

采用哪一種方案較省錢?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①若,則;②直角三角形的兩個(gè)銳角互余:③如果,那么個(gè)角都是直角的四邊形是正方形.其中,原命題和逆命題均為真命題的有(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)P是(不與點(diǎn)A,B重合)為半圓上一點(diǎn).將圖形沿BP折疊,分別得到點(diǎn)A’,O’.設(shè)∠ABP=α.

1)當(dāng)α=10°時(shí),∠ABA’= ____度;

2)當(dāng)點(diǎn)O’落在弧上時(shí),求出α的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案