【題目】由于世界人口增長、水污染以及水資源浪費等原因,全世界面臨著淡水資源不足的問題,我國是世界上嚴(yán)重缺水的國家之一,人均占水量僅為2400m3左右,我國已被聯(lián)合國列為13個貧水國家之一,合理利用水資源是人類可持續(xù)發(fā)展的當(dāng)務(wù)之急,而節(jié)約用水是水資源合理利用的關(guān)鍵所在,是最快捷、最有效、最可行的維護水資源可持續(xù)利用的途徑之一,為了調(diào)查居民的用水情況,有關(guān)部門對某小區(qū)的20戶居民的月用水量進(jìn)行了調(diào)查,數(shù)據(jù)如下:(單位:t)
6.7 | 8.7 | 7.3 | 11.4 | 7.0 | 6.9 | 11.7 | 9.7 | 10.0 | 9.7 |
7.3 | 8.4 | 10.6 | 8.7 | 7.2 | 8.7 | 10.5 | 9.3 | 8.4 | 8.7 |
整理數(shù)據(jù) 按如下分段整理樣本數(shù)據(jù)并補至表格:(表1)
用水量x(t) | 6.0≤x<7.5 | 7.5≤x<9.0 | 9.0≤x<10.5 | 10.5≤x<12 |
人數(shù) | a | 6 | b | 4 |
分析數(shù)據(jù),補全下列表格中的統(tǒng)計量;(表2)
平均數(shù) | 中位數(shù) | 眾數(shù) |
8.85 | c | d |
得出結(jié)論:
(1)表中的a= ,b= ,c= ,d= .
(2)若用表1中的數(shù)據(jù)制作一個扇形統(tǒng)計圖,則9.0≤x<10.5所示的扇形圓心角的度數(shù)為 度.
(3)如果該小區(qū)有住戶400戶,請根據(jù)樣本估計用水量在6.0≤x<9.0的居民有多少戶?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間y1(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:
地鐵站 | A | B | C | D | E |
x(千米) | 8 | 9 | 10 | 11.5 | 13 |
y1(分鐘) | 18 | 20 | 22 | 25 | 28 |
(1)求y1關(guān)于x的函數(shù)表達(dá)式;
(2)李華騎單車的時間y2(單位:分鐘)也受x的影響,其關(guān)系可以用y2=x2-11x+78來描述,請問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在距離大足城區(qū)的1.5公里的北山之上,有一處密如峰房的石窟造像點,今被稱為北山石窟.北山石窟造像在兩宋時期達(dá)到鼎盛,逐漸都成了以北山佛灣為中心,環(huán)繞營盤坡、佛耳巖,觀音坡、多寶塔等多處造像點的大型石窟群.多寶塔,也稱為“白塔”“北塔”,于巖石之上,為八角形閣式磚塔,外觀可辨十二級,其內(nèi)有八層樓閣,可沿著塔心內(nèi)的梯道逐級而上,元且期間,小華和媽媽到大足北山游玩,小華站在坡度為l=1:2的山坡上的B點觀看風(fēng)景,恰好看到對面的多寶培,測得眼睛A看到塔頂C的仰角為30°,接著小華又向下走了10米,剛好到達(dá)坡底E,這時看到塔頂C的仰角為45°,若AB=1.5米,則多寶塔的高度CD約為( 。ň_到0.1米,參考數(shù)據(jù)≈1.732)
A. 51.0米B. 52.5米C. 27.3米D. 28.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=﹣x2+x+2與x軸交于A、B兩點,與y軸交于C點,拋物線的頂點為Q,連接BC.
(1)求直線BC的解析式;
(2)點P是直線BC上方拋物線上的一點,過點P作PD⊥BC于點D,在直線BC上有一動點M,當(dāng)線段PD最大時,求PM+MB最小值;
(3)如圖②,直線AQ交y軸于G,取線段BC的中點K,連接OK,將△GOK沿直線AQ平移得△G′O'K′,將拋物線y=﹣x2+x+2沿直線AQ平移,記平移后的拋物線為y′,當(dāng)拋物線y′經(jīng)過點Q時,記頂點為Q′,是否存在以G'、K'、Q'為頂點的三角形是等腰三角形?若存在,求出點G′的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)概率的課堂上,老師提出的問題:只有一張電影票,小麗和小芳想通過抽取撲克牌的游戲來決定誰去看電影,請你設(shè)計一個對小麗和小芳都公平的方案.甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小麗先抽一張,小芳從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小麗看電影,否則小芳看電影.
(1)甲同學(xué)的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)乙同學(xué)將甲同學(xué)的方案修改為只用2、3、5、7四張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC=45°,∠C=60°,⊙O經(jīng)過點A,B,與BC交于點D,連接AD.
(Ⅰ)如圖①.若AB是⊙O的直徑,交AC于點E,連接DE,求∠ADE的大。
(Ⅱ)如圖②,若⊙O與AC相切,求∠ADC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、C、F、B四點在一條直線上,AB=DE,AC⊥BD,EF⊥BD,垂足分別為點C、點F,CD=BF.
求證:(1)△ABC≌△EDF;
(2)AB∥DE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com