【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點,點A在x軸上,點B在直線x=3上,直線x=3與x軸交于點C
(1)求拋物線的解析式;
(2)點P從點A出發(fā),以每秒個單位長度的速度沿線段AB向點B運動,點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CA向點A運動,點P,Q同時出發(fā),當其中一點到達終點時,另一個點也隨之停止運動,設運動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點N在直線x=3上.
①當t為何值時,矩形PQNM的面積最。坎⑶蟪鲎钚∶娣e;
②直接寫出當t為何值時,恰好有矩形PQNM的頂點落在拋物線上.
【答案】(1)拋物線解析式為y=﹣x2+3x+4;(2)①當t=時,面積最小是;②t=、或2.
【解析】
(1)利用待定系數(shù)法進行求解即可;
(2)①分別用t表示PE、PQ、EQ,用△PQE∽△QNC表示NC及QN,列出矩形PQNM面積與t的函數(shù)關系式問題可解;
②由①利用線段中點坐標分別等于兩個端點橫縱坐標平均分的數(shù)量關系,表示點M坐標,分別討論M、N、Q在拋物線上時的情況,并分別求出t值.
(1)由已知,B點橫坐標為3,
∵A、B在y=x+1上,
∴A(﹣1,0),B(3,4),
把A(﹣1,0),B(3,4)代入y=﹣x2+bx+c得,
,解得:,
∴拋物線解析式為y=﹣x2+3x+4;
(2)①如圖,過點P作PE⊥x軸于點E,
∵直線y=x+1與x軸夾角為45°,P點速度為每秒個單位長度,
∴t秒時點E坐標為(﹣1+t,0),Q點坐標為(3﹣2t,0),
∴EQ=4﹣3t,PE=t,
∵∠PQE+∠NQC=90°,
∠PQE+∠EPQ=90°,
∴∠EPQ=∠NQC,
∴△PQE∽△QNC,
∴,
∴矩形PQNM的面積S=PQNQ=2PQ2,
∵PQ2=PE2+EQ2,
∴S=2()2=20t2﹣48t+32,
當t=時,
S最小=20×()2﹣48×+32=;
②由①點Q坐標為(3﹣2t,0),P(﹣1+t,t),C(3,0),
∴△PQE∽△QNC,可得NC=2QE=8﹣6t,
∴N點坐標為(3,8﹣6t),
由矩形對邊平行且相等,P(﹣1+t,t),Q (3﹣2t,0),
∴點M坐標為(3t﹣1,8﹣5t)
當M在拋物線上時,則有
8﹣5t=﹣(3t﹣1)2+3(3t﹣1)+4,
解得t=,
當點Q到A時,Q在拋物線上,此時t=2,
當N在拋物線上時,8﹣6t=4,
∴t=,
綜上所述當t=、或2時,矩形PQNM的頂點落在拋物線上.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2+(m﹣3)x﹣m+2的圖象交x軸正半軸于點A,交x軸負半軸于點B,交y軸于點C.
(1)求m的取值范圍;
(2)若△ABC恰為等腰三角形,求m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直線L上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4 , 則S1+2S2+2S3+S4=()
A. 5 B. 4 C. 6 D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側),與y軸交于點C.將拋物線m繞點B旋轉180°,得到新的拋物線n,它的頂點為C1,與x軸的另一個交點為A1.若四邊形AC1A1C為矩形,則a,b應滿足的關系式為( 。
A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,O為坐標原點,設點P的坐標為(x,y),當x<0時,點P的變換點P′的坐標為(﹣x,y);當x≥0時,點P的變換點P′的坐標為(﹣y,x).
(1)若點A(2,1)的變換點A′在反比例函數(shù)y=的圖象上,則k= ;
(2)若點B(2,4)和它的變換點B'在直線y=ax+b上,則這條直線對應的函數(shù)關系式為 ,∠BOB′的大小是 度.
(3)點P在拋物線y=x2﹣2x﹣3的圖象上,以線段PP′為對角線作正方形PMP'N,設點P的橫坐標為m,當正方形PMP′N的對角線垂直于x軸時,求m的取值范圍.
(4)拋物線y=(x﹣2)2+n與x軸交于點C,D(點C在點D的左側),頂點為E,點P在該拋物線上.若點P的變換點P′在拋物線的對稱軸上,且四邊形ECP′D是菱形,求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=50°,P是BC邊上一點,將△ABP繞點A逆時針旋轉50°,點P旋轉后的對應點為點P′.
(1)畫出旋轉后的三角形;
(2)連接PP′,若∠BAP=20°,求∠PP′C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結論錯誤的是( )
A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列一元二次方程中,兩實根之和為1的是 ( )
A. x2—x+1=0 B. x2+x—3=0 C. 2 x2-x-1=0 D. x2-x-5=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com