【題目】如圖,互相垂直的兩條射線OE與OF的端點O在三角板的內(nèi)部,與三角板兩條直角邊的交點分別為點D、B.

(1)填空:若∠ABO=50°,則∠ADO=  ;

(2)若DC、BP分別是∠ADO、∠ABF的角平分線,如圖1.求證:DC⊥BP;

(3)若DC、BP分別分別是∠ADE、∠ABF的角平分線,如圖2.猜想DC與BP的位置關(guān)系,并說明理由.

【答案】(1)130°;(2)證明見解析,(3)DC與BP互相平行.理由見解析.

【解析】試題分析:(1)由四邊形的內(nèi)角和為360°即可得;

(2)如圖1,延長DC交BP于G,由∠OBA+∠ODA=180°、∠OBA+∠ABF=180°可得∠ODA=∠ABF,再由DC、BP分別是∠ADO、∠ABF的角平分線,從而可得∠CDA=∠CBG,再由∠DCA=∠BCG,繼而可得∠BGC=∠A=90°,即得DC⊥BP;

(3)DC與BP互相平行.如圖2,作過點A作AH∥BP,則可得∠ABP=∠BAH,由∠OBA+∠ODA=180°,可得∠ABF+∠ADE=180°,再由DC、BP分別分別是∠ADE、∠ABF的角平分線,從而可得∠ADC+∠ABP=90°,進(jìn)而可得∠DAH=∠ADC,從而可得CD∥AH,最后得CD∥BP.

試題解析:(1)如圖1,∵OE⊥OF,∴∠EOF=90°,

在四邊形OBAD中,∠A=∠BOD=90°,∠ABO=50°,

∴∠ADO=360°﹣90°﹣90°﹣50°=130°;

故答案為:130°;

(2)如圖1,延長DC交BP于G,

∵∠OBA+∠ODA=180°,而∠OBA+∠ABF=180°,∴∠ODA=∠ABF,

∵DC、BP分別是∠ADO、∠ABF的角平分線,∴∠CDA=∠CBG,

而∠DCA=∠BCG,∴∠BGC=∠A=90°,∴DC⊥BP;

(3)DC與BP互相平行.

理由:如圖2,作過點A作AH∥BP,則∠ABP=∠BAH,

∵∠OBA+∠ODA=180°,∴∠ABF+∠ADE=180°,

∵DC、BP分別分別是∠ADE、∠ABF的角平分線,∴∠ADC+∠ABP=90°,

∴∠ADC+∠BAH=90°,

而∠DAH+∠BAH=90°,∴∠DAH=∠ADC,∴CD∥AH,∴CD∥BP.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算2x6÷x4的結(jié)果是( 。

A. x2 B. 2x2 C. 2x4 D. 2x10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】冰冰家新安裝了一臺太陽能熱水器,一天她測量發(fā)現(xiàn)18:00時,太陽能熱水器水箱內(nèi)水的溫度是80℃,以后每小時下降4℃,第二天,冰冰早晨起來后測得水箱內(nèi)水的溫度為32℃,請你猜一猜她起床的時間是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列二次函數(shù)的圖象與x軸有兩個不同的交點的是( 。

A. y=x2 B. y=x2+4 C. y=3x2﹣2x+5 D. y=3x2+5x﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB和拋物線交于點A(-4,0),B(0,4),且點B是拋物線的頂點.

(1)求直線AB和拋物線的解析式.

(2)點P是直線上方拋物線上的一點,求當(dāng)△PAB面積最大時點P的坐標(biāo).

(3)M是直線AB上一動點,在平面直角坐標(biāo)系內(nèi)是否存在點N,使以O(shè)、B、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=﹣x2+2x﹣3,則y的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意結(jié)合圖形填空:如圖,點E在DF上,點B在AC上,∠1=∠2,∠C=∠D.試說明:AC∥DF.將過程補(bǔ)充完整.

解:∵∠1=∠2(已知)

且∠1=∠3  

∴∠2=∠3(等量代換)

    

∴∠C=∠ABD  

又∵∠C=∠D(已知)

  =  (等量代換 )

∴AC∥DF  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點,點P,Q是直線l上的兩個動點,且點P在第二象限,點Q在第四象限,∠POQ=135°.

1求△AOB的周長;

2設(shè)AQ=t>0,試用含t的代數(shù)式表示點P的坐標(biāo);

3當(dāng)動點P,Q在直線l上運動到使得△AOQ與△BPO的周長相等時,記tan∠AOQ=m,若過點A的二次函數(shù)y=ax2+bx+c同時滿足以下兩個條件:

①6a+3b+2c=0;

②當(dāng)m≤x≤m+2時,函數(shù)y的最大值等于,求二次項系數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若22x+3﹣22x+1=384,則x=

查看答案和解析>>

同步練習(xí)冊答案