【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A-1,0)、點(diǎn)B30)、點(diǎn)C4,y1),若點(diǎn)Dx2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:①二次函數(shù)y=ax2+bx+c的最小值為-4a;②若-1≤x2≤4,則0≤y2≤5a;③若y2y1,則x24;④一元二次方程cx2+bx+a=0的兩個根為-1.其中正確結(jié)論的個數(shù)是(  )

A. 1B. 2C. 3D. 4

【答案】B

【解析】

利用交點(diǎn)式寫出拋物線解析式為y=ax2-2ax-3a,配成頂點(diǎn)式得y=ax-12-4a,則可對①進(jìn)行判斷;計算x=4時,y=a51=5a,則根據(jù)二次函數(shù)的性質(zhì)可對②進(jìn)行判斷;利用對稱性和二次函數(shù)的性質(zhì)可對③進(jìn)行判斷;由于b=-2a,c=-3a,則方程cx2+bx+a=0化為-3ax2-2ax+a=0,然后解方程可對④進(jìn)行判斷.

拋物線解析式為y=ax+1)(x-3),

y=ax2-2ax-3a

y=ax-12-4a,

∴當(dāng)x=1時,二次函數(shù)有最小值-4a,所以①正確;

當(dāng)x=4時,y=a51=5a,

∴當(dāng)-1≤x2≤4,則-4a≤y2≤5a,所以②錯誤;

∵點(diǎn)C4,5a)關(guān)于直線x=1的對稱點(diǎn)為(-2,5a),

∴當(dāng)y2y1,則x24x-2,所以③錯誤;

b=-2ac=-3a,

∴方程cx2+bx+a=0化為-3ax2-2ax+a=0,

整理得3x2+2x-1=0,解得x1=-1,x2=,所以④正確.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0).

1)若b1,a=﹣c,求證:二次函數(shù)的圖象與x軸一定有兩個不同的交點(diǎn);

2)若a0,c0,且對于任意的實(shí)數(shù)x,都有y1,求4a+b2的取值范圍;

3)若函數(shù)圖象上兩點(diǎn)(0,y1)和(1,y2)滿足y1y20,且2a+3b+6c0,試確定二次函數(shù)圖象對稱軸與x軸交點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(-1,0),其對稱軸為直線x=1,下列結(jié)論中正確的是(  )

A. abc>0 B. 2a-b=0 C. 4a+2b+c<0 D. 9a+3b+c=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實(shí)黨的精準(zhǔn)扶貧政策,A、B兩城決定向CD兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20/噸和25/噸:從B城往C,D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15/噸和24/噸,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.

1A城和B城各有多少噸肥料?

2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求yx的函數(shù)關(guān)系式.

3)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?并求最少運(yùn)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店經(jīng)銷甲、乙兩種不同的筆記本.已知:兩種筆記本的進(jìn)價之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,馬陽光同學(xué)買4本甲種筆記本和3本乙種筆記本共用了47元.

1)甲、乙兩種筆記本的進(jìn)價分別是多少元?

2)該文具店購入這兩種筆記本共60本,花費(fèi)不超過296元,則購買甲種筆記本多少本時該文具店獲利最大?

3)店主經(jīng)統(tǒng)計發(fā)現(xiàn)平均每天可售出甲種筆記本350本和乙種筆記本150本.如果甲種筆記本的售價每提高1元,則每天將少售出50本甲種筆記本;如果乙種筆記本的售價每提高1元,則每天少售出40本乙種筆記本,為使每天獲取的利潤更多,店主決定把兩種筆記本的價格都提高元,在不考慮其他因素的條件下,當(dāng)定為多少元時,才能使該文具店每天銷售甲、乙兩種筆記本獲取的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,三點(diǎn)在上,直徑平分,過點(diǎn)交弦于點(diǎn),在的延長線上取一點(diǎn),使得.

1)求證:的切線;

2)連接AFDE于點(diǎn)M,若AD=4,DE=5,求DM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)AB重合的動點(diǎn),PCAB,點(diǎn)MOP中點(diǎn).

(1)求證:四邊形AOCP是平行四邊形;

(2)填空:①當(dāng)∠ABP 時,四邊形AOCP是菱形;

②連接BP,當(dāng)∠ABP 時,PC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組在活動課上測量學(xué)校旗桿的高度.已知小亮站著測量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點(diǎn)B、D、F在同一直線上).

(1)求小敏到旗桿的距離DF.(結(jié)果保留根號)

(2)求旗桿EF的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知,,,點(diǎn)在直線上,把沿著直線翻折,點(diǎn)落在點(diǎn)處,聯(lián)結(jié),如果直線與直線所構(gòu)成的夾角為60°,那么點(diǎn)的坐標(biāo)是____________

查看答案和解析>>

同步練習(xí)冊答案