(2005•濱州)在Rt△ABC中,若∠C=90°,AC=1,BC=2,則下列結(jié)論中正確的是( )
A.sinB=
B.cosB=
C.tanB=2
D.cotB=
【答案】分析:先根據(jù)勾股定理求出AB,再根據(jù)銳角三角函數(shù)的定義解答.
解答:解:∵在Rt△ABC中,∠C=90°,AC=1,BC=2,
∴AB=,sinB=,cosB=,tanB=,cotB=2.
故選A.
點(diǎn)評(píng):本題考查銳角三角函數(shù)的定義即:在直角三角形中,銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•濱州)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(0,1),C(2,).
(Ⅰ)直線l:y=kx+b過(guò)A、B兩點(diǎn),求k、b的值;
(Ⅱ)求過(guò)A、B、C三點(diǎn)的拋物線Q的解析式;
(Ⅲ)設(shè)(Ⅱ)中的拋物線Q的對(duì)稱(chēng)軸與x軸相交于點(diǎn)E,那么在對(duì)稱(chēng)軸上是否存在點(diǎn)F,使⊙F與直線l和x軸同時(shí)相切?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年山東省濱州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•濱州)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(0,1),C(2,).
(Ⅰ)直線l:y=kx+b過(guò)A、B兩點(diǎn),求k、b的值;
(Ⅱ)求過(guò)A、B、C三點(diǎn)的拋物線Q的解析式;
(Ⅲ)設(shè)(Ⅱ)中的拋物線Q的對(duì)稱(chēng)軸與x軸相交于點(diǎn)E,那么在對(duì)稱(chēng)軸上是否存在點(diǎn)F,使⊙F與直線l和x軸同時(shí)相切?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(06)(解析版) 題型:解答題

(2005•濱州)在△ABC中,若∠A、∠B、∠C的對(duì)邊分別為a、b、c,則有結(jié)論:
a2=b2+c2-2bccosA
b2=a2+c2-2accosB
c2=a2+b2-2abcosC;
(Ⅰ)上面的結(jié)論即為著名的余弦定理,試用文字語(yǔ)言表述余弦定理:______;
試用余弦定理解答下面的問(wèn)題(Ⅱ):
(Ⅱ)過(guò)邊長(zhǎng)為1的正三角形的中心O引兩條夾角為120°的射線,分別與正三角形的邊交于M、N兩點(diǎn),試求線段MN長(zhǎng)的取值范圍(借助圖解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年山東省濱州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•濱州)在△ABC中,若∠A、∠B、∠C的對(duì)邊分別為a、b、c,則有結(jié)論:
a2=b2+c2-2bccosA
b2=a2+c2-2accosB
c2=a2+b2-2abcosC;
(Ⅰ)上面的結(jié)論即為著名的余弦定理,試用文字語(yǔ)言表述余弦定理:______;
試用余弦定理解答下面的問(wèn)題(Ⅱ):
(Ⅱ)過(guò)邊長(zhǎng)為1的正三角形的中心O引兩條夾角為120°的射線,分別與正三角形的邊交于M、N兩點(diǎn),試求線段MN長(zhǎng)的取值范圍(借助圖解答).

查看答案和解析>>

同步練習(xí)冊(cè)答案