【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,且AC⊥BD,OF⊥AB,垂足分別為E、F,請問OF與CD有怎樣的數(shù)量關(guān)系?
【答案】OF=CD.理由見解析.
【解析】試題分析:連接AO并延長,與⊙O相交于點G,連接BG,根據(jù)同弧所對的圓周角相等可得∠G=∠ADB,再根據(jù)等角的余角相等求出∠DAE=∠BAG,然后根據(jù)相等的圓周角所對的弦相等可得CD=BG,根據(jù)垂徑定理可得AF=BF,從而得到OF是△ABG的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得OF=BG.
試題解析:OF=CD.
理由如下:如圖,連接AO并延長,與⊙O相交于點G,連接BG,
則∠G=∠ADB,
∵AC⊥BD,
∴∠DAE+∠ADB=90°,
∵AG是直徑,
∴∠BAG+∠G=90°,
∴∠DAE=∠BAG,
∴CD=BG,
∵OF⊥AB,
∴AF=BF,
∴OF是△ABG的中位線,
∴OF=BG,
故OF=CD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:①c>0;②若點B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點,則y1<y2;③2a﹣b=0;④ <0.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:材料1 若一元二次方程的兩根為、,則,
材料2:已知實數(shù)、滿足、,且,求的值。
解:由題知、是方程的兩個不相等的實數(shù)根,根據(jù)材料1得,
根據(jù)上述材料解決下面問題:
(1)一元二次方程的兩根為、,則= , = 。
(2)已知實數(shù)、滿足、,且,求的值.
(3)已知實數(shù)、滿足、,且,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點O,點E,F分別從B,C兩點同時出發(fā),以1cm/s的速度沿BC,CD運動,到點C,D時停止運動,設(shè)運動時間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( 。
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D, AC交⊙O于點E,∠BAC=45°。
(1)求∠EBC的度數(shù);
(2)求證:BD=CD。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列關(guān)于函數(shù)的四個命題:①當時, 有最小值10;②為任意實數(shù), 時的函數(shù)值大于時的函數(shù)值;③若,且是整數(shù),當時, 的整數(shù)值有個;④若函數(shù)圖象過點和,其中, ,則.其中真命題的序號是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解本校學生周末玩手機所花時間的情況,七、八、九年級中各抽取50名學生(男女各25名)進行調(diào)查,此次調(diào)查所抽取的樣本容量是( )
A. 150B. 75C. 50D. 25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com