【題目】隨著我國的發(fā)展與強(qiáng)大,中國文化與世界各國文化的交流與融合進(jìn)一步加強(qiáng).為了增進(jìn)世界各國人民對中國語言和文化的理解,在世界各國建立孔子學(xué)院,推廣漢語,傳播中華文化.同時,各國學(xué)校之間的交流活動也逐年增加.在與國際友好學(xué)校交流活動中,小敏打算制做一個正方體禮盒送給外國朋友,每個面上分別書寫一種中華傳統(tǒng)美德,一共有仁義禮智信孝六個字.如圖是她設(shè)計的禮盒平面展開圖,那么字對面的字是( 。

A. B. C. D.

【答案】B

【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點(diǎn)作答.

解:正方體的表面展開圖,相對的面之間一定相隔一個正方形,

是相對面,

是相對面,

是相對面,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在正方形ABCD中,AB=6,P為邊CD上一點(diǎn),過P點(diǎn)作PEBD于點(diǎn)E,連接BP.

(1)OBP的中點(diǎn),連接CO并延長交BD于點(diǎn)F

①如圖1,連接OE,求證:OEOC;

②如圖2,若,求DP的長;

(2)=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx﹣4(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積;
(3)若點(diǎn)P,Q同時從A點(diǎn)出發(fā),如圖2(注:圖2與圖1完全相同),都以每秒1個單位長度的速度分別沿線段AB,AC運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,當(dāng)P,Q運(yùn)動到t秒時,將△APQ沿PQ所在直線翻折,點(diǎn)A恰好落在拋物線上E處,判定此時四邊形APEQ的形狀,說明理由,并求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某路公交車從起點(diǎn)經(jīng)過A、B、C、D站到達(dá)終點(diǎn),一路上下乘客如下表所示。(用正數(shù)表示上車的人數(shù),負(fù)數(shù)表示下車的人數(shù))

(1)到終點(diǎn)下車還有________.

(2)車行駛在那兩站之間車上的乘客最多?________站和________

(3)若每人乘坐一站需買票1元,問該車出車一次能收入多少錢?寫出算式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖案中,可以看作中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 請結(jié)合題意填空,完成本題的解答;
(Ⅰ)解不等式①,得
(Ⅱ)解不等式②,得
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來
(Ⅳ)原不等式組的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).
(Ⅰ)如圖①,過點(diǎn)C作⊙O的切線,與AB的延長線相交于點(diǎn)P,若∠CAB=32°,求∠P的大。

(Ⅱ)如圖②,D為優(yōu)弧ADC上一點(diǎn),且DO的延長線經(jīng)過AC的中點(diǎn)E,連接DC與AB相交于點(diǎn)P,若∠CAB=16°,求∠DPA的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為1,點(diǎn)P是AD邊上的一個動點(diǎn),點(diǎn)A關(guān)于直線BP的對稱點(diǎn)是點(diǎn)Q,連接PQ、DQ、CQ、BQ,設(shè)AP=x.

(1)BQ+DQ的最小值是_______,此時x的值是_______;

(2)如圖,若PQ的延長線交CD邊于點(diǎn)E,并且CQD=90°

求證:點(diǎn)E是CD的中點(diǎn); 求x的值.

(3)若點(diǎn)P是射線AD上的一個動點(diǎn),請直接寫出當(dāng)CDQ為等腰三角形時x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?

譯文:用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?

設(shè)井深為x尺,根據(jù)題意列方程,正確的是(  )

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

同步練習(xí)冊答案