(a32=


  1. A.
    a5
  2. B.
    a6
  3. C.
    a8
  4. D.
    a9
B
分析:根據(jù)冪的乘方:底數(shù)不變,指數(shù)相乘計算后直接選取答案.
解答:(a32=a3×2=a6
故選B.
點評:本題考查的是冪的乘方的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列解題過程,借鑒其中一種方法解答后面給出的試題:
問題:某人買13個雞蛋,5個鴨蛋、9個鵝蛋共用去了9.25元;買2個雞蛋,4個鴨蛋、3個鵝蛋共用去了3.20元.試問只買雞蛋、鴨蛋、鵝蛋各一個共需多少元.
分析:設(shè)買雞蛋,鴨蛋、鵝蛋各一個分別需x、y、z元,則需要求x+y+z的值.由題意,知
13x+5y+9z=9.25---(1)
2x+4y+3z=3.20----(2)
;
視x為常數(shù),將上述方程組看成是關(guān)于y、z的二元一次方程組,化“三元”為“二元”、化“二元”為“一元”從而獲解.
解法1:視x為常數(shù),依題意得
5y+9z=9.25-13x---(3)
4y+3z=3.20-2x----(4)

解這個關(guān)于y、z的二元一次方程組得
y=0.05+x
z=1-2x

于是x+y+z=x+0.05+x+1-2x=1.05.
評注:也可以視z為常數(shù),將上述方程組看成是關(guān)于x、y的二元一次方程組,解答方法同上,你不妨試試.
分析:視x+y+z為整體,由(1)、(2)恒等變形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:設(shè)x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下關(guān)于a、b的二元一次方
程組
5a+4b=9.25---(5)
4a-b=3.20----(6)

由⑤+4×⑥,得21a+22.05,a=1.05.
評注:運用整體的思想方法指導(dǎo)解題.視x+y+z,2x+z為整體,令a=x+y+z,b=2x+z,代入①、②將原方程組轉(zhuǎn)化為關(guān)于a、b的二元一次方程組從而獲解.
請你運用以上介紹的任意一種方法解答如下數(shù)學(xué)競賽試題:
購買五種教學(xué)用具A1、A2、A3、A4、A5的件數(shù)和用錢總數(shù)列成下表:
精英家教網(wǎng)
那么,購買每種教學(xué)用具各一件共需多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

購買五種教學(xué)用具A1,A2,A3,A4,A5的件數(shù)和用錢總數(shù)列成下表:
品名
次數(shù) 
A1  A2  A3  A4 A5 總錢數(shù) 
 第一次購件數(shù)  1  3  4  5  6  1992元
 第二次購件數(shù)  1  5  7  9  11  2984元
那么,購買每種教具各一件共需
 
元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•鞍山)如圖,從內(nèi)到外,邊長依次為2,4,6,8,…的所有正六邊形的中心均在坐標(biāo)原點,且一組對邊與x軸平行,它們的頂點依次用A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12…表示,那么頂點A62的坐標(biāo)是
(-11,-11
3
(-11,-11
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠AOB=45°,在OA上截取OA1=1,OA2=3,OA3=5,OA4=7,OA5=9,…,過點A1、A2、A3、A4、A5分別作OA的垂線與OB相交,得到并標(biāo)出一組陰影部分,它們的面積分別為S1,S2,S3,….觀察圖中的規(guī)律,第n個陰影部分的面積Sn為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在同一平面內(nèi)有直線a1,a2,a3,…,a2012,a2013,a1∥a2,a2⊥a3,a3∥a4,a4⊥a5,…,那么a1與a2013的位置關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊答案