如圖,頂點為P(4,-4)的二次函數(shù)圖象經(jīng)過原點(0,0),點A在該圖象上,OA交其對稱軸l于點M,點M、N關(guān)于點P對稱,連接AN、ON.

(1)求該二次函數(shù)的關(guān)系式;

(2)若點A的坐標是(6,-3),求△ANO的面積;

(3)當點A在對稱軸l右側(cè)的二次函數(shù)圖象上運動時,請解答下面問題:

①證明:∠ANM=∠ONM;

②△ANO能否為直角三角形?如果能,請求出所有符合條件的點A的坐標;如果不能,請說明理由.

 

【答案】

(1)

(2)12

(3)相似三角形的基本知識推出該角度的相等,不能

【解析】

試題分析:(1)∵二次函數(shù)圖象的頂點為P(4,-4),∴設(shè)二次函數(shù)的關(guān)系式為。

又∵二次函數(shù)圖象經(jīng)過原點(0,0),∴,解得。

∴二次函數(shù)的關(guān)系式為,即。(2分)

(2)設(shè)直線OA的解析式為,將A(6,-3)代入得,解得。

∴直線OA的解析式為。

把x=4代入得y=-2!郙(4,-2)。

又∵點M、N關(guān)于點P對稱,∴N(4,-6),MN=4。

。(3分)

(3)①證明:過點A作AH⊥于點H,,與x軸交于點D。則

設(shè)A(),

則直線OA的解析式為。

則M(),N(),H()。

∴OD=4,ND=,HA=,NH=。

!唷螦NM=∠ONM。(2分)

②不能。理由如下:分三種情況討論:

情況1,若∠ONA是直角,由①,得∠ANM=∠ONM=450,

∴△AHN是等腰直角三角形!郒A=NH,即。

整理,得,解得。

∴此時,點A與點P重合。故此時不存在點A,使∠ONA是直角。

情況2,若∠AON是直角,則。

 ,

。

整理,得,解得,。

∴此時,故點A與原點或與點P重合。故此時不存在點A,使∠AON是直角。

情況3,若∠NAO是直角,則△AMN∽△DMO∽△DON,∴

∵OD=4,MD=,ND=,∴。

整理,得,解得。

∴此時,點A與點P重合。故此時不存在點A,使∠ONA是直角。

綜上所述,當點A在對稱軸右側(cè)的二次函數(shù)圖象上運動時,△ANO不能成為直角三角形。(3分)

考點:二次函數(shù)的綜合題

點評:在解題時要能靈運用二次函數(shù)的圖象和性質(zhì)求出二次函數(shù)的解析式,利用數(shù)形結(jié)合思想解題是本題的關(guān)鍵.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,頂點為D的拋物線y=x2+bx-3與x軸相交于A,B兩點,與y軸相交于點C,連接BC,已知△BOC是等腰三角形.
(1)求點B的坐標及拋物線y=x2+bx-3的解析式;
(2)求四邊形ACDB的面積;
(3)若點E(x,y)是y軸右側(cè)的拋物線上不同于點B的任意一點,設(shè)以A,B,C,E為頂點的四邊形的面積為S.
①求S與x之間的函數(shù)關(guān)系式.
②若以A,B,C,E為頂點的四邊形與四邊形ACDB的面積相等,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,頂點為D的拋物線y=x2+bx-3與x軸相交于A、B兩點,與y軸相交于點C,連接BC,精英家教網(wǎng)已知tan∠ABC=1.
(1)求點B的坐標及拋物線y=x2+bx-3的解析式;
(2)在x軸上找一點P,使△CDP的周長最小,并求出點P的坐標;
(3)若點E(x,y)是拋物線上不同于A,B,C的任意一點,設(shè)以A,B,C,E為頂點的四邊形的面積為S,求S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖①,頂點為A的拋物線E:y=ax2-2ax(a>0)與坐標軸交于O、B兩點.拋物線F與拋物線E關(guān)于x軸對稱.
(1)求拋物線F的解析式及頂點C的坐標(可用含a的式子表示);
(2)如圖②,直線l:y=ax(a>0)經(jīng)過原點且與拋物線E交于點Q,判斷拋物線F的頂點C是否在直線l上;

(3)直線OQ繞點O旋轉(zhuǎn),在x軸上方與直線BC交于點M,與直線AC交于點N.在旋轉(zhuǎn)過程中,請利用圖③,圖④探究∠OMC與∠ABN滿足怎樣的關(guān)系,并驗證.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•懷集縣一模)如圖,頂點為P(4,-4)的二次函數(shù)圖象經(jīng)過原點(0,0),點A在該圖象上,
OA交其對稱軸l于點M,點M、N關(guān)于點P對稱,連接AN、ON.
(1)求該二次函數(shù)的關(guān)系式.
(2)若點A的坐標是(6,-3),求△ANO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•海南)如圖,頂點為P(4,-4)的二次函數(shù)圖象經(jīng)過原點(0,0),點A在該圖象上,OA交其對稱軸l于點M,點M、N關(guān)于點P對稱,連接AN、ON,
(1)求該二次函數(shù)的關(guān)系式;
(2)若點A在對稱軸l右側(cè)的二次函數(shù)圖象上運動時,請解答下面問題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請求出所有符合條件的點A的坐標;如果不能,請說明理由.

查看答案和解析>>

同步練習冊答案