【題目】如圖,拋物線y=ax2+bx過A(﹣4,0),B(﹣1,3)兩點,點C、B關于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.
(1)求拋物線的函數(shù)表達式;
(2)寫出點C的坐標,并求出△ABC的面積;
(3)點P是拋物線上一動點,且位于x軸的下方,當△ABP的面積為15時,求出點P的坐標;
(4)若點M在直線BH上運動,點N在x軸上運動,當以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時點N的坐標.
【答案】(1)y=﹣x2﹣4x;(2)3;(3)點P坐標為(﹣6,﹣12)或(1,﹣5);(4)N點坐標為(2,0)或(﹣4,0)或(﹣2,0)或(4,0).
【解析】分析:
(1)將點A、B的坐標代入y=ax2+bx中列出關于a、b的方程組,解方程組求得a、b的值即可得到拋物線的解析式y=﹣x2﹣4x;
(2)將(1)中拋物線的解析式化為“頂點式”得到拋物線的對稱軸,結合點B的坐標即可求得點C的坐標,這樣由A、B、C三點的坐標即可求得S△ABC的值;
(3)如下圖1,過點P作PF垂直x軸,交直線AB于點F,先由A、B的坐標求得直線AB的解析式y=x+4,設點P的橫坐標為m,則點P的坐標為(m,﹣m2﹣4m),點F的坐標為(m,m+4),由此可得PF= m2+5m+4,然后由S△PAB=S△PFB-S△PFA=15可得:×(m2+5m+4)×[(-1-m)-(-4-m)]=15,解此方程求得m的值即可得到點P的坐標;
(4)當以點C、M、N為頂點的三角形為等腰直角三角形時,分點C、M、N分別為直角頂點三類情況進行討論:I、①M為直角頂點,且M在x軸上方;②M為直角頂點,且M在x軸的下方;II、①N為直角頂點,且N在y軸的右側;②N為直角頂點,且N在y軸的左側;III、C為直角頂點;根據(jù)上述情況畫出對應的圖形,再結合已知條件進行分析解答即可.
詳解:
(1)把點A(﹣4,0),B(﹣1,3)代入拋物線y=ax2+bx中,
得,解得,
∴拋物線表達式為y=﹣x2﹣4x;
(2)∵y=﹣x2+4x=﹣(x+2)2+4,
∴拋物線對稱軸為x=﹣2,
∵點C和點B關于對稱軸對稱,點B的坐標為(﹣1,3),
∴C(﹣3,3),
∴BC=2,
∴S△ABC=×2×3=3;
(3)如圖1,過P點作PF垂直x軸,交直線AB于點F,
∵A(﹣4,0),B(﹣1,3),
設直線AB的解析式為y=kx+b,
則,解得,
即直線AB的解析式為y=x+4,
設點P(m,﹣m2﹣4m),則F(m,m+4),
∴PF=m+4+m2+4m=m2+5m+4.
∴S△PAB=×(m2+5m+4)×3=15,
m2+5m﹣6=0,
解得m1=﹣6,m2=1,
∴點P坐標為(﹣6,﹣12)或(1,﹣5);
(4)以點C、M、N為頂點的三角形為等腰直角三角形時,分三類情況討論:
①以點M為直角頂點且M在x軸上方時,如圖2,CM=MN,∠CMN=90°,
則△CBM≌△MHN,
∴BC=MH=2,BM=HN=3﹣2=1,
∴ON=OH+NH=2,
∴N(﹣2,0);
②以點M為直角頂點且M在x軸下方時,如圖3,
作輔助線,構建如圖所示的兩直角三角形:Rt△NEM和Rt△MDC,
得Rt△NEM≌Rt△MDC,
∴EM=CD=5,
∵OH=1,
∴ON=NH﹣OH=5﹣1=4,
∴N(4,0);
③以點N為直角頂點且N在y軸右側時,如圖4,CN=MN,∠MNC=90°,作輔助線,
同理得Rt△NEM≌Rt△MDC,
∴ME=NH=DN=3,
∴ON=3﹣1=2,
∴N(2,0);
④以點N為直角頂點且N在y軸左側時,作輔助線,如圖5,
同理得ME=DN=NH=3,
∴ON=1+3=4,
∴N(﹣4,0);
⑤以C為直角頂點時,由于點C(-3,3)到x軸的距離和到拋物線對稱軸x=-2的距離不相等,所以此時不能構成滿足條件的等腰直角三角形;
綜上可知當△CMN為等腰直角三角形時N點坐標為(2,0)或(﹣4,0)或(﹣2,0)或(4,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是等邊△ABC內一點,∠AOB=110°,∠BOC=a.將△BOC繞點C按順時針方向旋轉60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當a=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當a為多少度時,△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,對角線AC、BD相交于O,EF過點O,連接AF、CE.
(1)求證:△BFO≌△DEO;
(2)若AF⊥BC,試判斷四邊形AFCE的形狀,并加以證明;
(3)若在(2)的條件下再添加EF平分∠AEC,試判斷四邊形AFCE的形狀,無需說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場準備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.
(1)求A、B型號衣服進價各是多少元?
(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.
【答案】(1)A種型號的衣服每件90元,B種型號的衣服100元;(2)有三種進貨方案,具體見解析.
【解析】試題分析:(1)等量關系為:A種型號衣服9件×進價+B種型號衣服10件×進價=1810,A種型號衣服12件×進價+B種型號衣服8件×進價=1880;
(2)關鍵描述語是:獲利不少于699元,且A型號衣服不多于28件.關系式為:18×A型件數(shù)+30×B型件數(shù)≥699,A型號衣服件數(shù)≤28.
試題解析:(1)設A種型號的衣服每件x元,B種型號的衣服y元,
則:,
解之得.
答:A種型號的衣服每件90元,B種型號的衣服100元;
(2)設B型號衣服購進m件,則A型號衣服購進(2m+4)件,
可得:,
解之得192m12,
∵m為正整數(shù),
∴m=10、11、12,2m+4=24、26、28.
答:有三種進貨方案:
(1)B型號衣服購買10件,A型號衣服購進24件;
(2)B型號衣服購買11件,A型號衣服購進26件;
(3)B型號衣服購買12件,A型號衣服購進28件。
點睛:點睛:本題主要考查二元一次方程組和一元一次不等式組的實際問題的應用,解題的關鍵是讀懂題目的意思,根據(jù)題目給出的條件,設出未知數(shù),分別找出甲組和乙組對應的工作時間,找出合適的等量關系,列出方程組,再求解.
【題型】解答題
【結束】
21
【題目】如圖,銳角△ABC內接于⊙O,若⊙O的半徑為6,sinA=,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(0,4)是直角坐標系y軸上一點,動點P從原點O出發(fā),沿x軸正半軸運動,速度為每秒1個單位長度,以P為直角頂點在第一象限內作等腰Rt△APB.設P點的運動時間為t秒.
(1)若AB//x軸,求t的值;
(2)當t=3時,坐標平面內有一點M(不與A重合),使得以M、P、B為頂點的三角形和△ABP全等,請求出點M的坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC、BD是它的對角線,∠ABC=∠ADC=90°,∠BCD是銳角.
(1)若BD=BC,證明:sin∠BCD=.
(2)若AB=BC=4,AD+CD=6,求的值.
(3)若BD=CD,AB=6,BC=8,求sin∠BCD的值.
(注:本題可根據(jù)需要自己畫圖并解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個公共點,其橫坐標為1,則一次函數(shù)的圖像可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點,EP⊥CD于點P,則∠FPC=( )
A. 35°B. 45°C. 50°D. 55°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=6.
(1)求拋物線的解析式及點D的坐標;
(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;
(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com