| ||
2 |
| ||
2 |
| ||
2 |
| ||
2 |
| ||
2 |
| ||
2 |
| ||
2 |
| ||
2 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012年江蘇省蘇州張家港市第二中學(xué)八年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本題10分) 以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點(diǎn)分別為E、F、G、H,順次連結(jié)這四個(gè)點(diǎn)得四邊形EFGH.如圖1,當(dāng)四邊形ABCD為正方形時(shí),我們發(fā)現(xiàn)四邊形EFGH是正方形;
【小題1】(1)如圖2,當(dāng)四邊形ABCD為矩形時(shí),則四邊形EFGH的形狀是 ;(1分)
【小題2】(2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時(shí),設(shè)∠ADC=(0°<<90°),
【小題3】① 試用含的代數(shù)式表示∠HAE= ;(1分)
【小題4】② 求證:HE=HG;(4分)③ 四邊形EFGH是什么四邊形?并說(shuō)明理由.(4分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012年江蘇省蘇州張家港市八年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本題10分) 以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點(diǎn)分別為E、F、G、H,順次連結(jié)這四個(gè)點(diǎn)得四邊形EFGH.如圖1,當(dāng)四邊形ABCD為正方形時(shí),我們發(fā)現(xiàn)四邊形EFGH是正方形;
1.(1)如圖2,當(dāng)四邊形ABCD為矩形時(shí),則四邊形EFGH的形狀是 ;(1分)
2.(2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時(shí),設(shè)∠ADC=(0°<<90°),
3.① 試用含的代數(shù)式表示∠HAE= ;(1分)
4.② 求證:HE=HG;(4分)③ 四邊形EFGH是什么四邊形?并說(shuō)明理由.(4分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com