【題目】如圖所示,港口位于港口正西方向處,小島位于港口北偏西的方向.一艘游船從港口出發(fā),沿方向(北偏西)以的速度駛離港口,同時一艘快艇從港口出發(fā),沿北偏東的方向以的速度駛向小島,在小島用加裝補給物資后,立即按原來的速度給游船送去.
快艇從港口到小島需要多長時間?
若快艇從小島到與游船相遇恰好用時,求的值及相遇處與港口的距離.
【答案】 快艇從港口到小島的時間為小時;當時,,當時,.
【解析】
(1)要求B到C的時間,已知其速度,則只要求得BC的路程,再利用路程公式即可求得所需的時間;
(2)過C作CD⊥OA,垂足為D,設相會處為點E.求出OC=OBcos30°=60
,CD= OC=30 ,OD=OCcos30°=90,則DE=90-3v.在直角△CDE中利用勾股定理得出CD2+DE2=CE2,即(303)2+(90-3v)2=602,解方程求出v=20或40,進而求出相遇處與港口O的距離.
∵,,
∴.
在中,∵,
∴,
∴快艇從港口到小島的時間為:(小時);
過作,垂足為,設相會處為點.
則,,,
∴.
∵,,
∴,
∴或,
∴當時,,
當時,.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標;
(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+8與x軸,y軸分別交于點A和B,M是OB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的解析式為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了慶祝新年的到來,我市某中學舉行“青春飛揚”元旦匯演,正式表演前,把各班的節(jié)目分為A(戲類),B(小品類),C(歌舞類),D(其他)四個類別,并將結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.請你根據統(tǒng)計圖解答下列問題.
(1)參加匯演的節(jié)目數共有 個,在扇形統(tǒng)計圖中,表示“B類”的扇形的圓心角為 度,圖中m的值為 ;
(2)補全條形統(tǒng)計圖;
(3)學校決定從本次匯演的D類節(jié)目中,選出2個去參加市中學生文藝匯演.已知D類節(jié)目中有相聲節(jié)目2個,魔術節(jié)目1個,朗誦節(jié)目1個,請求出所選2個節(jié)目恰好是一個相聲和一個魔術概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,學習完“代人消元法”和“加減消元法“解二元一次方程組后,善于思考的小銘在解方程組時,采用了一種“整體代換”的解法:
解:將方程②變形:4x+10y+y=5即2(2x+5y)+y=5③
把方程①代入③得:2×3+y=5,∴y=-1①得x=4,所以,方程組的解為.
請你解決以下問題:
(1)模仿小銘的“整體代換”法解方程組.
(2)已知x,y滿足方程組,求x2+4y2的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)如圖所示,下列結論中:
①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).
其中正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在推進新課改的過程中,開設的“課程超市”有:A.炫彩劇社,B.烹飪,C.游泳,D.羽毛球,E.科技等五個科目,學生可根據自己的愛好選修一門,負責“課程超市”的老師對七年級一班全體同學的選課情況進行調查統(tǒng)計,并將結果繪制成了如下兩幅尚不完整的統(tǒng)計圖:
根據圖中提供的信息,解答下列問題:
(1)請求出該班的總人數;
(2)扇形統(tǒng)計圖中,D所在扇形的圓心角度數為 ,并補全條形統(tǒng)計圖;
(3)該班班委4人中,1人選修炫彩劇社,2人選修烹飪,1人選修游泳,老師要從這4人中任選2人了解他們對“課程超市”課程安排的看法,請你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修炫彩劇社,1人選修烹飪的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為表彰在某活動中表現積極的同學,老師決定購買文具盒與鋼筆作為獎品.已知5個文具盒、2支鋼筆共需100元;3個文具盒、1支鋼筆共需57元.
(1)每個文具盒、每支鋼筆各多少元?
(2)若本次表彰活動,老師決定購買10件作為獎品,若購買個文具盒,10件獎品共需元,求與的函數關系式.如果至少需要購買3個文具盒,本次活動老師最多需要花多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BC為Rt△ABC的斜邊,∠CBA=30°,△ABD,△ACF,△BCE均為正三角形,四邊形MNPE是長方形,點F在MN上,點D在NP上,若AC=2,則圖中空白部分的面積是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com