(2009•廈門)在平面直角坐標(biāo)系中,已知點(diǎn)O(0,0),A(1,n),B(2,0),其中n>0,△OAB是等邊三角形.點(diǎn)P是線段OB的中點(diǎn),將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°,記點(diǎn)P的對應(yīng)點(diǎn)為點(diǎn)Q,則n=    ,點(diǎn)Q的坐標(biāo)是   
【答案】分析:解題的關(guān)鍵是抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向逆時(shí)針,旋轉(zhuǎn)角度30°,通過畫圖計(jì)算得點(diǎn)Q坐標(biāo).
解答:解:由已知,△OAB是等邊三角形,A(1,n),B(2,0),其中n>0,通過計(jì)算得n=;
由已知得P(1,0),根據(jù)旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向逆時(shí)針,旋轉(zhuǎn)角度30°,畫圖,解30°的直角三角形,從而得Q點(diǎn)坐標(biāo)為().
點(diǎn)評:本題涉及圖形旋轉(zhuǎn),體現(xiàn)了新課標(biāo)的精神,抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向逆時(shí)針,旋轉(zhuǎn)角度30°,通過畫圖計(jì)算得點(diǎn)Q坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年江蘇省揚(yáng)州中學(xué)樹人學(xué)校中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•廈門)我們知道,當(dāng)一條直線與一個(gè)圓有兩個(gè)公共點(diǎn)時(shí),稱這條直線與這個(gè)圓相交.類似地,我們定義:當(dāng)一條直線與一個(gè)正方形有兩個(gè)公共點(diǎn)時(shí),稱這條直線與這個(gè)正方形相交.
如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)為O(0,0)、A(1,0)、B(1,1)、C(0,1).
(1)判斷直線y=x+與正方形OABC是否相交,并說明理由;
(2)設(shè)d是點(diǎn)O到直線y=-x+b的距離,若直線y=-x+b與正方形OABC相交,求d的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•廈門)我們知道,當(dāng)一條直線與一個(gè)圓有兩個(gè)公共點(diǎn)時(shí),稱這條直線與這個(gè)圓相交.類似地,我們定義:當(dāng)一條直線與一個(gè)正方形有兩個(gè)公共點(diǎn)時(shí),稱這條直線與這個(gè)正方形相交.
如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)為O(0,0)、A(1,0)、B(1,1)、C(0,1).
(1)判斷直線y=x+與正方形OABC是否相交,并說明理由;
(2)設(shè)d是點(diǎn)O到直線y=-x+b的距離,若直線y=-x+b與正方形OABC相交,求d的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省廈門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•廈門)已知二次函數(shù)y=x2-x+c.
(1)若點(diǎn)A(-1,n)、B(2,2n-1)在二次函數(shù)y=x2-x+c的圖象上,求此二次函數(shù)的最小值;
(2)若點(diǎn)D(x1,y1)、E(x2,y2)、P(m,m)(m>0)在二次函數(shù)y=x2-x+c的圖象上,且D、E兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對稱,連接OP.當(dāng)2≤OP≤2+時(shí),試判斷直線DE與拋物線y=x2-x+c+的交點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(02)(解析版) 題型:填空題

(2009•廈門)在平面直角坐標(biāo)系中,已知點(diǎn)O(0,0),A(1,n),B(2,0),其中n>0,△OAB是等邊三角形.點(diǎn)P是線段OB的中點(diǎn),將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°,記點(diǎn)P的對應(yīng)點(diǎn)為點(diǎn)Q,則n=    ,點(diǎn)Q的坐標(biāo)是   

查看答案和解析>>

同步練習(xí)冊答案