【答案】
分析:(1)已知了拋物線的解析式,不難用公式法求出M的坐標(biāo)為(1,a-1).由于拋物線過A點(diǎn),因此A的坐標(biāo)是(0,a).根據(jù)A,M的坐標(biāo),用待定系數(shù)法可得出直線AM的解析式為y=-x+a.直線AM和y=
x-a聯(lián)立方程組即可求出N的坐標(biāo)為(
a,-
a).
(2)根據(jù)折疊的性質(zhì)不難得出N與N′正好關(guān)于y軸對稱,因此N′的坐標(biāo)為(-
a,-
a).由于N′在拋物線上,因此將N′的坐標(biāo)代入拋物線的解析式中即可得出a的值.
(3)本題可分兩種情況進(jìn)行討論:
①當(dāng)P在y軸左側(cè)時,如果使以P,N,A,C為頂點(diǎn)的四邊形為平行四邊形,那么P需要滿足的條件是PN平行且相等于AC,也就是說,如果N點(diǎn)向上平移AC個單位即-2a后得到的點(diǎn)就是P點(diǎn).然后將此時P的坐標(biāo)代入拋物線中,如果沒有解說明不存在這樣的點(diǎn)P,如果能求出a的值,那么即可求出此時P的坐標(biāo).
②當(dāng)P在y軸右側(cè)時,P需要滿足的條件是PN與AC應(yīng)互相平分(平行四邊形的對角線互相平分),那么NP必過原點(diǎn),且關(guān)于原點(diǎn)對稱.那么可得出此時P的坐標(biāo),然后代入拋物線的解析式中按①的方法求解即可.
解答:解:(1)∵y=x
2-2x+a=(x-1)
2-1+a,
∴頂點(diǎn)M的坐標(biāo)為;(1,a-1),
由于拋物線過A點(diǎn),因此A的坐標(biāo)是(0,a).
設(shè)直線AM的解析式為y=kx+b,
則
,
解得:
,
則直線AM的解析式為:y=-x+a.
直線AM和y=
x-a聯(lián)立方程組,
,
解得:
,
即可求出N的坐標(biāo)為(
a,-
a).
(2)∵由題意得點(diǎn)N與點(diǎn)N′關(guān)于y軸對稱,
∴N′(-
a,-
a).
將N′的坐標(biāo)代入y=x
2-2x+a得:
-
a=
a
2+
a+a,
∴a
1=0(不合題意,舍去),a
2=-
.
∴此時拋物線的解析式為:y=x
2-2x-
;
(3)存在,理由如下:
當(dāng)點(diǎn)P在y軸的左側(cè)時,若四邊形ACPN是平行四邊形,則PN平行且等于AC,
由A(0,a),C(0,-a),得AC=-2a,
則把N向上平移-2a個單位得到P,坐標(biāo)為(
a,-
a),代入拋物線的解析式,
得:-
a=
a
2-
a+a,
解得a
1=0(不舍題意,舍去),a
2=-
,
則P(-
,
);
當(dāng)點(diǎn)P在y軸的右側(cè)時,若四邊形APCN是平行四邊形,則AC與PN互相平分,
由A(0,a),C(0,-a),則OA=OC,OP=ON.
則P與N關(guān)于原點(diǎn)對稱,
則P(-
a,
a);
將P點(diǎn)坐標(biāo)代入拋物線解析式得:
a=
a
2+
a+a,
解得a
1=0(不合題意,舍去),a
2=-
,
則P(
,-
).
故存在這樣的點(diǎn)P
1(-
,
)或P
2(
,-
),能使得以P,A,C,N為頂點(diǎn)的四邊形是平行四邊形.
故答案為:(1,a-1),(
a,-
a).
點(diǎn)評:本題主要考查了待定系數(shù)法求函數(shù)解析式、平行四邊形的性質(zhì)等重要知識點(diǎn),綜合性強(qiáng),能力要求較高.考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.