精英家教網 > 初中數學 > 題目詳情
如圖,在直角梯形ABCD中,ADBC,∠D=90°,AD=a,BC=b,AB=c,以AB為直徑作⊙O.試探究:
(1)當a,b,c滿足什么關系時,⊙O與DC相離?
(2)當a,b,c滿足什么關系時,⊙O與DC相切?
(3)當a,b,c滿足什么關系時,⊙O與DC相交?
當⊙O與DC相切,設切點為P,連OP,則OP⊥CD,
∵AO=BO,AD‖BC
∴OP是中位線,
∴AD+BC=2OP,
即a+b=c,
所以(1)當a,b,c滿足a+b>c時,⊙O與DC相離;
(2)當a,b,c滿足a+b=c時,⊙O與DC相切;
(3)當a,b,c滿足a+b<c時,⊙O與DC相交;
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

如圖,以O為圓心的兩個同心圓中,大圓的弦AB切小圓于點C,若∠AOB=120°,則大圓半徑R與小圓半徑r之間滿足的關系為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

△ABC是半徑為
15
的圓內接三角形,以A為圓心,
6
2
為半徑的⊙A與邊BC相切于D點,則AB•AC的值為( 。
A.
3
10
2
B.4C.
5
2
D.3
10

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

在平面直角坐標系中,以點(2,3)為圓心,2為半徑的圓必定( 。
A.與x軸相離,與y軸相切B.與x軸,y軸都相離
C.與x軸相切,與y軸相離D.與x軸,y軸都相切

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,O為BC邊上一點,以O為圓心,OB為半徑作半圓與AB邊和BC邊分別交于點D、點E,連接CD,且CD=CA,BD=6
5
,tan∠ADC=2.
(1)求證:CD是半圓O的切線;
(2)求半圓O的直徑;
(3)求AD的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,以AB為直徑的⊙O交AC于點D,直徑AB左側的半圓上有一點E,連結EB、ED,∠CBD=∠E.
(1)求證:BC是⊙O的切線;
(2)若∠E=30°,BC=
4
3
3
,求陰影部分的面積.(計算結果精確到0.1)(參考數值:π≈3.14,
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,PA、PB分別切⊙O于A、B,∠APB=50°,則∠AOP=______度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖:PA、PB切⊙O于A、B,過點C的切線交PA、PB于D、E,PA=8cm,則△PDE的周長為______cm.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,AM、AN分別切⊙O于M、N兩點,點B在⊙O上,且∠MBN=70°,則∠A=______度.

查看答案和解析>>

同步練習冊答案