【題目】如圖,邊長為2的正方形ABCD的頂點(diǎn)A在y軸上,頂點(diǎn)D在反比例函數(shù)y=x>0的圖像上,已知點(diǎn)B的坐標(biāo)是,,則k的值為( )

A10 B.8 C.6 D.4

【答案】B

【解析】

試題分析過點(diǎn)B作BEy軸于E,過點(diǎn)D作DFy軸于F,根據(jù)正方形的性質(zhì)可得AB=AD,BAD=90°,再根據(jù)同角的余角相等求出BAE=ADF,然后利用“角角邊”證明ABE和DAF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AF=BE,DF=AE,再求出OF,然后寫出點(diǎn)D的坐標(biāo),再把點(diǎn)D的坐標(biāo)代入反比例函數(shù)解析式計(jì)算即可求出k具體解答過程如下,

如圖,過點(diǎn)B作BEy軸于E,過點(diǎn)D作DFy軸于F,

在正方形ABCD中,AB=AD,BAD=90°,

∴∠BAE+DAF=90°,

∵∠DAF+ADF=90°,

∴∠BAE=ADF,

ABE和DAF中,

,

∴△ABE≌△DAFAAS,

AF=BE,DF=AE,

正方形的邊長為2,B,,

BE=,AE=

OF=OE+AE+AF=,

點(diǎn)D的坐標(biāo)為,5,

頂點(diǎn)D在反比例函數(shù)y=x>0的圖象上,

k=xy=×5=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACB中,∠ACB=90°,CEACB的中線,分別過點(diǎn)A、點(diǎn)CCEAB的平行線,交于點(diǎn)D

(1)求證:四邊形ADCE是菱形;

(2)若CE=4,且∠DAE=60°,求ACB的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是線段--動(dòng)點(diǎn),以為直徑作半圓,過點(diǎn)交半圓于點(diǎn),連接.已知,設(shè)兩點(diǎn)間的距離為,的面積為.(當(dāng)點(diǎn)與點(diǎn)或點(diǎn)重合時(shí),的值為)請(qǐng)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行探究. (: 本題所有數(shù)值均保留一位小數(shù))

通過畫圖、測(cè)量、計(jì)算,得到了的幾組值,如下表:

補(bǔ)全表格中的數(shù)值: ; .

根據(jù)表中數(shù)值,繼續(xù)描出中剩余的三個(gè)點(diǎn),畫出該函數(shù)的圖象并寫出這個(gè)函數(shù)的一條性質(zhì);

結(jié)合函數(shù)圖象,直接寫出當(dāng)的面積等于時(shí),的長度約為___ _.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在反比例函數(shù)y= 的圖象上有一動(dòng)點(diǎn)A,連接AO并延長交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足AC=BC,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)C始終在函數(shù)y= 的圖象上運(yùn)動(dòng),若tanCAB=2,則k的值為(

A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援災(zāi)區(qū),某校愛心活動(dòng)小組準(zhǔn)備用籌集的資金購買A、B兩種型號(hào)的學(xué)習(xí)用品共1000件.已知B型學(xué)習(xí)用品的單價(jià)比A型學(xué)習(xí)用品的單價(jià)多10元,用180元購買B型學(xué)習(xí)用品的件數(shù)與用120元購買A型學(xué)習(xí)用品的件數(shù)相同.

1)求A、B兩種學(xué)習(xí)用品的單價(jià)各是多少元?

2)若購買這批學(xué)習(xí)用品的費(fèi)用不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD為平行四邊形,延長AD到E使DE=AD,連接EBEC,DB添加一個(gè)條件,不能使四邊形DBCE成為矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在線段BD上,在BD的同側(cè)作等腰RtABC和等腰RtADE,其中∠ABC=AED=90°CDBE、AE分別交于點(diǎn)P、M.對(duì)于下列結(jié)論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。

A. ①②B. ①②③C. ①②③④D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,C90°,AC10,BC16.動(dòng)點(diǎn)P以每秒3個(gè)單位的速度從點(diǎn)A開始向點(diǎn)C移動(dòng),直線l從與AC重合的位置開始,以相同的速度沿CB方向平行移動(dòng),且分別與CB,AB邊交于EF兩點(diǎn),點(diǎn)P與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)P移動(dòng)到與點(diǎn)C重合時(shí),點(diǎn)P和直線l同時(shí)停止運(yùn)動(dòng).在移動(dòng)過程中,將PEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn),使得點(diǎn)P的對(duì)應(yīng)點(diǎn)M落在直線l上,點(diǎn)F的對(duì)應(yīng)點(diǎn)記為點(diǎn)N,連接BN,當(dāng)BNPE時(shí),t的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線交于點(diǎn)O,以ODCD為鄰邊作平行四邊形DOEC,OEBC于點(diǎn)F,連結(jié)BE

1)求證:FBC中點(diǎn).

2)若OBAC,OF1,求平行四邊形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案