【題目】如圖,拋物線y=x2+bx+cx軸交于A、B兩點,B點坐標(biāo)為(4,0),與y軸交于點C(0,4).

(1)求拋物線的解析式;

(2)點Px軸下方的拋物線上,過點P的直線y=x+m與直線BC交于點E,與y軸交于點F,求PE+EF的最大值;

(3)點D為拋物線對稱軸上一點.

①當(dāng)BCD是以BC為直角邊的直角三角形時,直接寫出點D的坐標(biāo);

②若BCD是銳角三角形,直接寫出點D的縱坐標(biāo)n的取值范圍.

【答案】(1)拋物線的解析式為y=x2﹣5x+4;(2)PE+EF的最大值為;(3)①符合條件的點D的坐標(biāo)是(,)或(,﹣);②點D的縱坐標(biāo)的取值范圍為<y<或﹣<y<

【解析】1)利用待定系數(shù)法求拋物線的解析式;

(2)易得BC的解析式為y=﹣x+4,先證明ECF為等腰直角三角形,作PHy軸于H,PGy軸交BCG,如圖1,則EPG為等腰直角三角形,PE=PG,設(shè)P(t,t2﹣4t+3)(1<t<3),則G(t,﹣t+3),接著利用t表示PF、PE,所以PE+EF=2PE+PF=﹣t2+5t,然后利用二次函數(shù)的性質(zhì)解決問題;

(3)①如圖2,拋物線的對稱軸為直線x=﹣點D的縱坐標(biāo)的取值范圍;

②由于BCD是以BC為斜邊的直角三角形有4+(y﹣3)2+1+y2=18,解得y1=,y2=,得到此時D點坐標(biāo)為(,)或(,),然后結(jié)合圖形可確定BCD是銳角三角形時點D的縱坐標(biāo)的取值范圍.

1)把B(4,0),C(0,4)代入y=x2+bx+c,得

,

解得

∴拋物線的解析式為y=x2﹣5x+4;

(2)B(4,0),C(0,4),根據(jù)待定系數(shù)法易得BC的解析式為y=﹣x+4,

∵直線y=x+m與直線y=x平行,

∴直線y=﹣x+4與直線y=x+m垂直,

∴∠CEF=90°,

∴△ECF為等腰直角三角形,

PHy軸于H,PGy軸交BCG,如圖1,EPG為等腰直角三角形,PE=PG,

設(shè)P(t,t2﹣5t+4)(1<t<4),則G(t,﹣t+4),

PF=PH=t,PG=﹣t+4﹣(t2﹣5t+4)=﹣t2+4t,

PE=PG=﹣t2+2t,

PE+EF=PE+PE+PF=2PE+PF=﹣t2+4t+t=﹣t2+5t=﹣(t﹣2+,

當(dāng)t=時,PE+EF的最大值為;

(3)①如圖2,拋物線的對稱軸為直線x=,

設(shè)D(,y),則BC2=42+42=32,DC2=(2+(y﹣4)2,BD2=(4﹣2+y2=+y2,

當(dāng)BCD是以BC為直角邊,BD為斜邊的直角三角形時,BC2+DC2=BD2,

32+(2+(y﹣4)2=+y2,解得y=5,此時D點坐標(biāo)為(,);

當(dāng)BCD是以BC為直角邊,CD為斜邊的直角三角形時,BC2+DB2=DC2,

32++y2=(2+(y﹣4)2,解得y=﹣1,此時D點坐標(biāo)為(,﹣);

綜上所述,符合條件的點D的坐標(biāo)是(,)或(,﹣);

②當(dāng)BCD是以BC為斜邊的直角三角形時,DC2+DB2=BC2,即(2+(y﹣4)2++y2=32,解得y1=,y2=,此時D點坐標(biāo)為(,)或(,),

所以BCD是銳角三角形,點D的縱坐標(biāo)的取值范圍為<y<或﹣<y<

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一玩具廠去年生產(chǎn)某種玩具,成本為/件,出廠價為/件,年銷售量為萬件.今年計劃通過適當(dāng)增加成本來提高產(chǎn)品檔次,以拓展市場.若今年這種玩具每件的成本比去年成本增加倍,今年這種玩具每件的出廠價比去年出廠價相應(yīng)提高倍,則預(yù)計今年年銷售量將比去年年銷售量增加倍(本題中).

用含的代數(shù)式表示,今年生產(chǎn)的這種玩具每件的成本為________元,今年生產(chǎn)的這種玩具每件的出廠價為________元.

求今年這種玩具的每件利潤元與之間的函數(shù)關(guān)系式.

設(shè)今年這種玩具的年銷售利潤為萬元,求當(dāng)為何值時,今年的年銷售利潤最大?最大年銷售利潤是多少萬元?

注:年銷售利潤(每件玩具的出廠價-每件玩具的成本)年銷售量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,∠BAD90°,以點B為圓心,BC長為半徑畫弧,與射線AD相交于點E,連結(jié)BE,過C點作CFBE,垂足為F

1)線段BF與圖中現(xiàn)有的哪一條線段相等?先將你猜想出的結(jié)論填寫在下面的橫線上,然后再加以證明.

結(jié)論:BF   

2)若AB6,AE8,求點A到點C的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,面積為10,的垂直平分線分別交于點,。若點的中點,點為線段上一動點,則周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小明家小區(qū)空地上有兩棵筆直的樹、.一天,他在處測得樹頂的仰角,在處測得樹頂的仰角,線段恰好經(jīng)過樹頂.已知、兩處的距離為米,兩棵樹之間的距離米,、、四點.在一條直線上,求樹的高度.(結(jié)果精確到米,參考數(shù)據(jù):,,.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點、分別為的外心和內(nèi)心,,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,在ABCD中,點EAB中點,連接DE并延長,交CB的延長線于點F.

(1)求證:△ADE≌△BFE;

(2)如圖2,點G是邊BC上任意一點(點G不與點B、C重合),連接AGDF于點H,連接HC,過點AAK∥HC,交DF于點K.

求證:HC=2AK;

當(dāng)點G是邊BC中點時,恰有HD=nHK(n為正整數(shù)),求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(2,2)、ABx軸于點BADy軸于點D,C(-21)為AB的中點,直線CDx軸于點F

1)求直線CD的函數(shù)關(guān)系式;

2)過點CCEDF且交x軸于點E,求證:∠ADC=∠EDC;

3)求點E坐標(biāo);

4)點P是直線CE上的一個動點,求PBPF的最小值.

查看答案和解析>>

同步練習(xí)冊答案