【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標(biāo)為(4,0),與y軸交于點C(0,4).
(1)求拋物線的解析式;
(2)點P在x軸下方的拋物線上,過點P的直線y=x+m與直線BC交于點E,與y軸交于點F,求PE+EF的最大值;
(3)點D為拋物線對稱軸上一點.
①當(dāng)△BCD是以BC為直角邊的直角三角形時,直接寫出點D的坐標(biāo);
②若△BCD是銳角三角形,直接寫出點D的縱坐標(biāo)n的取值范圍.
【答案】(1)拋物線的解析式為y=x2﹣5x+4;(2)PE+EF的最大值為;(3)①符合條件的點D的坐標(biāo)是(,)或(,﹣);②點D的縱坐標(biāo)的取值范圍為<y<或﹣<y<.
【解析】(1)利用待定系數(shù)法求拋物線的解析式;
(2)易得BC的解析式為y=﹣x+4,先證明△ECF為等腰直角三角形,作PH⊥y軸于H,PG∥y軸交BC于G,如圖1,則△EPG為等腰直角三角形,PE=PG,設(shè)P(t,t2﹣4t+3)(1<t<3),則G(t,﹣t+3),接著利用t表示PF、PE,所以PE+EF=2PE+PF=﹣t2+5t,然后利用二次函數(shù)的性質(zhì)解決問題;
(3)①如圖2,拋物線的對稱軸為直線x=﹣點D的縱坐標(biāo)的取值范圍;
②由于△BCD是以BC為斜邊的直角三角形有4+(y﹣3)2+1+y2=18,解得y1=,y2=,得到此時D點坐標(biāo)為(,)或(,),然后結(jié)合圖形可確定△BCD是銳角三角形時點D的縱坐標(biāo)的取值范圍.
(1)把B(4,0),C(0,4)代入y=x2+bx+c,得
,
解得 ,
∴拋物線的解析式為y=x2﹣5x+4;
(2)由B(4,0),C(0,4),根據(jù)待定系數(shù)法易得BC的解析式為y=﹣x+4,
∵直線y=x+m與直線y=x平行,
∴直線y=﹣x+4與直線y=x+m垂直,
∴∠CEF=90°,
∴△ECF為等腰直角三角形,
作PH⊥y軸于H,PG∥y軸交BC于G,如圖1,△EPG為等腰直角三角形,PE=PG,
設(shè)P(t,t2﹣5t+4)(1<t<4),則G(t,﹣t+4),
∴PF=PH=t,PG=﹣t+4﹣(t2﹣5t+4)=﹣t2+4t,
∴PE=PG=﹣t2+2t,
∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+4t+t=﹣t2+5t=﹣(t﹣)2+,
當(dāng)t=時,PE+EF的最大值為;
(3)①如圖2,拋物線的對稱軸為直線x=,
設(shè)D(,y),則BC2=42+42=32,DC2=()2+(y﹣4)2,BD2=(4﹣)2+y2=+y2,
當(dāng)△BCD是以BC為直角邊,BD為斜邊的直角三角形時,BC2+DC2=BD2,
即32+()2+(y﹣4)2=+y2,解得y=5,此時D點坐標(biāo)為(,);
當(dāng)△BCD是以BC為直角邊,CD為斜邊的直角三角形時,BC2+DB2=DC2,
即32++y2=()2+(y﹣4)2,解得y=﹣1,此時D點坐標(biāo)為(,﹣);
綜上所述,符合條件的點D的坐標(biāo)是(,)或(,﹣);
②當(dāng)△BCD是以BC為斜邊的直角三角形時,DC2+DB2=BC2,即()2+(y﹣4)2++y2=32,解得y1=,y2=,此時D點坐標(biāo)為(,)或(,),
所以△BCD是銳角三角形,點D的縱坐標(biāo)的取值范圍為<y<或﹣<y<.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一玩具廠去年生產(chǎn)某種玩具,成本為元/件,出廠價為元/件,年銷售量為萬件.今年計劃通過適當(dāng)增加成本來提高產(chǎn)品檔次,以拓展市場.若今年這種玩具每件的成本比去年成本增加倍,今年這種玩具每件的出廠價比去年出廠價相應(yīng)提高倍,則預(yù)計今年年銷售量將比去年年銷售量增加倍(本題中).
用含的代數(shù)式表示,今年生產(chǎn)的這種玩具每件的成本為________元,今年生產(chǎn)的這種玩具每件的出廠價為________元.
求今年這種玩具的每件利潤元與之間的函數(shù)關(guān)系式.
設(shè)今年這種玩具的年銷售利潤為萬元,求當(dāng)為何值時,今年的年銷售利潤最大?最大年銷售利潤是多少萬元?
注:年銷售利潤(每件玩具的出廠價-每件玩具的成本)年銷售量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠BAD=90°,以點B為圓心,BC長為半徑畫弧,與射線AD相交于點E,連結(jié)BE,過C點作CF⊥BE,垂足為F.
(1)線段BF與圖中現(xiàn)有的哪一條線段相等?先將你猜想出的結(jié)論填寫在下面的橫線上,然后再加以證明.
結(jié)論:BF= ;
(2)若AB=6,AE=8,求點A到點C的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明家小區(qū)空地上有兩棵筆直的樹、.一天,他在處測得樹頂的仰角,在處測得樹頂的仰角,線段恰好經(jīng)過樹頂.已知、兩處的距離為米,兩棵樹之間的距離米,、、、四點.在一條直線上,求樹的高度.(結(jié)果精確到米,參考數(shù)據(jù):,,.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,在ABCD中,點E是AB中點,連接DE并延長,交CB的延長線于點F.
(1)求證:△ADE≌△BFE;
(2)如圖2,點G是邊BC上任意一點(點G不與點B、C重合),連接AG交DF于點H,連接HC,過點A作AK∥HC,交DF于點K.
①求證:HC=2AK;
②當(dāng)點G是邊BC中點時,恰有HD=nHK(n為正整數(shù)),求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(-2,2)、AB⊥x軸于點B,AD⊥y軸于點D,C(-2,1)為AB的中點,直線CD交x軸于點F.
(1)求直線CD的函數(shù)關(guān)系式;
(2)過點C作CE⊥DF且交x軸于點E,求證:∠ADC=∠EDC;
(3)求點E坐標(biāo);
(4)點P是直線CE上的一個動點,求PB+PF的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com