如圖,?ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,分別過(guò)D,C作DE∥OC,CE∥OD.
(1)圖中有若干對(duì)相似三角形,請(qǐng)至少寫(xiě)出三對(duì)相似(不全等的)三角形,并選擇其中一對(duì)加以證明;
(2)求證:DM=數(shù)學(xué)公式OB.

(1)解:相似三角形有△ABM∽△NDM∽△NCE,△AOM∽△ACE∽△EDM,△DNE∽△CNA等.
證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴△ABM∽△NDM,
∵CE∥OD,
∴△NDM∽△NCE,△AOM∽△ACE,
∴△ABM∽△NDM∽△NCE,
∵DE∥OC,
∴△EDM∽△AOM,△DNE∽△CNA,
∴△AOM∽△ACE∽△EDM;
∴相似三角形有△ABM∽△NDM∽△NCE,△AOM∽△ACE∽△EDM,△DNE∽△CNA;

(2)證明:∵四邊形ABCD是平行四邊形,
∴OB=OD,OA=OC,
又∵CE∥OD,
∴AM=ME,
∴OM=CE,
∵CE∥OD,DE∥OC,
∴四邊形DOCE為平行四邊形,
∴CE=OD,
∴OM=OD=OB.
分析:(1)根據(jù)平行于三角形一邊的直線截另兩邊或另兩邊的延長(zhǎng)線所得三角形與原三角形相似,即可求得相似三角形有△ABM∽△NDM∽△NCE,△AOM∽△ACE∽△EDM,△DNE∽△CNA等;
(2)由四邊形ABCD是平行四邊形,可得OB=OD,OA=OC,又由CE∥OD,可得OM=CE,又由四邊形DOCE為平行四邊形,即可證得DM=OB.
點(diǎn)評(píng):此題考查了相似三角形的判定與平行四邊形的判定與性質(zhì).此題綜合性較強(qiáng),難度適中,解題的關(guān)鍵是注意平行于三角形一邊的直線截另兩邊或另兩邊的延長(zhǎng)線所得三角形與原三角形相似性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點(diǎn),則圖中全等的三角形共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC,BD相交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn),下列說(shuō)法不正確的是( 。
A、當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF一定為平行四邊形
B、在旋轉(zhuǎn)的過(guò)程中,線段AF與EC總相等
C、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形BEDF一定為菱形
D、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點(diǎn)E是AD的中點(diǎn),延長(zhǎng)CE交BA的延長(zhǎng)線于點(diǎn)F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•浙江)如圖,?ABCD中,對(duì)角線AC和BD交于點(diǎn)O,過(guò)O作OE∥BC交DC于點(diǎn)E,若OE=5cm,則AD的長(zhǎng)為
10
10
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案