【題目】如圖,在△ABC中,BD⊥AC,垂足為D,AB=AC=9,BC=6,求BD的長.

【答案】解:作AE⊥BC于E,如圖所示:
則∠AEC=90°,
∵AB=AC,
∴BE=CE= BC=3,
∴AE= =6 ,
∵BD⊥AC,
∴∠BDC=90°=∠AEC,
又∵∠C=∠C,
∴△AEC∽△BDC,
∴AE:BD=AC:BC,
∴BD= = =4
【解析】作AE⊥BC于E,由等腰三角形的性質(zhì)得出BE=CE= BC=3,由勾股定理求出AE,證明△AEC∽△BDC,得出對應(yīng)邊成比例,即可求出BD的長.
【考點精析】利用等腰三角形的性質(zhì)和勾股定理的概念對題目進(jìn)行判斷即可得到答案,需要熟知等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BE平分,

BC平行嗎?請說明理由;

EF的位置關(guān)系如何?為什么?

解:理由如下:

平角的定義

已知

____________

______

EF的位置關(guān)系是______

平分已知

角平分線的定義

已知

______等量代換

____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將背面相同,正面分別標(biāo)有數(shù)字1、2、3、4的四張卡片洗勻后,背面朝上放在桌面上,先從中隨機(jī)的抽取一張卡片(不放回),將該卡片正面上的數(shù)字作為十位數(shù)字,再隨機(jī)的抽取一張卡片,將該卡片正面上的數(shù)字作為個位數(shù)字,則組成的兩位數(shù)恰好是4的倍數(shù)的概率是多少?請用樹狀圖或列表法加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為2,AB∥x軸,AD∥y軸,頂點A恰好落在雙曲線y= 上,邊CD,BC分別交雙曲線于E,F(xiàn)兩點,若線段AE過原點,則EF的長為(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形紙扇完全打開后,陰影部分為貼紙,外側(cè)兩竹條AB,AC的夾角為120°,弧BC的長為30πcm,AD的長為15cm,則貼紙的面積等于cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,的垂直平分線交于點,交于點的垂直平分線交于點,交于點,連接、,求證:的周長;21.

如圖所示,在中,若,的垂直平分線交于點,交于點的垂直平分線交于點,交于點,連接、,試判斷的形狀,并證明你的結(jié)論.

如圖所示,在中,若,的垂直平分線交于點,交于點的垂直平分線交于點,交于點,連接、,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中的圖像(折線ABCDE)描述了一汽車在某一直線上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法:①汽車共行駛了120千米;②汽車在行駛途中停留了0.5小時;③汽車在整個行駛過程中的平均速度為80.8千米/時;④汽車自出發(fā)后3小時至4.5小時之間行駛的速度在逐漸減小.⑤汽車離出發(fā)地64千米是在汽車出發(fā)后1.2小時時。其中正確的說法共有( )

A.1個     B.2個      C.3個      D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若⊙O是等邊△ABC的外接圓,⊙O的半徑為2,則等邊△ABC的邊長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD進(jìn)行折紙,已知該紙片寬AB8cm,長BC10cm,當(dāng)沿AE折疊時,頂點D落在BC邊上的點F處,試求CE的長.

查看答案和解析>>

同步練習(xí)冊答案