【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為( 。

A. ,0) B. (2,0) C. ,0) D. (3,0)

【答案】C

【解析】

解:過點BBDx軸于點D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在ACOBCD中,∵∠OAC=∠BCD,∠AOC=∠BDC,AC=BC,∴△ACO≌△BCD(AAS),∴OC=BD,OA=CD,∵A(0,2),C(1,0),∴OD=3,BD=1,∴B(3,1),∴設反比例函數(shù)的解析式為,將B(3,1)代入,∴k=3,∴,∴y=2代入,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,C也移動了個單位長度,此時點C的對應點C的坐標為(,0).故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.

(1)作出△ABD 的邊 BD 上的高.

(2)若△ABC 的面積為 10,求△ADC 的面積.

(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,在等腰直角中,,,將邊繞點順時針旋轉(zhuǎn)得到線段,則的面積為_______

(2)如圖,在直角 中,,,將邊繞點順時針旋轉(zhuǎn)得到線段,連接,求的面積,并說明理由.(用含的式子表示)

(3)如圖,在等腰中,,將邊繞點順時針旋轉(zhuǎn)得到線段,連接,若,則 的面積為 (用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C90°,∠CAD=∠BAD,DEABE,點F在邊AC上,連接DF

1)求證:ACAE;

2)若CFBE,直接寫出線段AB,AFEB的數(shù)量關系:   

3)若AC8,AB10,且ABC的面積等于24,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當∠BAC+∠DAE=180°時,我們稱△ABC與△DAE互為“頂補等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點A叫做“旋補中心”.

特例感知:

(1)在圖2,圖3中,△ABC與△DAE互為“頂補三角形”,AM,AN是“頂心距”.

①如圖2,當∠BAC=90°時,AM與DE之間的數(shù)量關系為AM=  DE;

②如圖3,當∠BAC=120°,BC=6時,AN的長為  

猜想論證:

(2)在圖1中,當∠BAC為任意角時,猜想AM與DE之間的數(shù)量關系,并給予證明.

拓展應用

(3)如圖4,在四邊形ABCD,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四邊形ABCD的內(nèi)部是否存在點P,使得△PAD與△PBC互為“頂補等腰三角形”?若存在,請給予證明,并求△PBC的“頂心距”的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出定義,若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.

1)在你學過的特殊四邊形中,寫出兩種勾股四邊形的名稱;

2)如圖,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°

求證:△BCE是等邊三角形;

求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=45°AB=4cm.點P從點A出發(fā),以2cm/s的速度沿邊AB向終點B運動.過點PPQ⊥AB交折線ACB于點QDPQ中點,以DQ為邊向右側(cè)作正方形DEFQ.設正方形DEFQ△ABC重疊部分圖形的面積是ycm2),點P的運動時間為xs).

1)當點Q在邊AC上時,正方形DEFQ的邊長為 cm(用含x的代數(shù)式表示);

2)當點P不與點B重合時,求點F落在邊BC上時x的值;

3)當0x2時,求y關于x的函數(shù)解析式;

4)直接寫出邊BC的中點落在正方形DEFQ內(nèi)部時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O直徑,C是半圓上一點,連接BC、AC,過點OODBC與過點A的切線交于點D,連接DC并延長交AB的延長線于點E.

(1)求證:DE是⊙O的切線;

(2)若AE=3,CE=,求線段CE、BE與劣弧BC所圍成的圖形面積(結果保留根號和π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點A為切點,BP與⊙O交于點C,點DAP的中點,連結CD.

(1)求證:CD是⊙O的切線;

(2)若AB=2,P=30°,求陰影部分的面積.

查看答案和解析>>

同步練習冊答案