【題目】如圖,正方形 ABCD 的邊長為 8,E BC 邊的中點(diǎn),點(diǎn) P 在射線 AD 上, P PFAE F

1)請(qǐng)判斷△PFA 與△ABE 是否相似,并說明理由;

2)當(dāng)點(diǎn) P 在射線 AD 上運(yùn)動(dòng)時(shí),設(shè) PAx,是否存在實(shí)數(shù) x,使以 P,FE 為頂 點(diǎn)的三角形也與△ABE 相似?若存在,請(qǐng)求出 x 的值;若不存在,說明理由.

【答案】1)見解析;(2)存在,x的值為25.

【解析】

1)在PFAABE中,易得∠PAF=AEB及∠PFA=ABE=90°;故可得PFA∽△ABE;

2)根據(jù)題意:若EFP∽△ABE,則∠PEF=EAB;必須有PEAB;分兩種情況進(jìn)而列出關(guān)系式.

(1)證明:∵ADBC,

∴∠PAF=AEB.

∵∠PFA=ABE=90°

∴△PFA∽△ABE.

(2)

EFP∽△ABE,則∠PEF=EAB.

如圖,連接PE,DE,

PEAB.

∴四邊形ABEP為矩形.

PA=EB=2,即x=2.

如圖,延長AD至點(diǎn)P,作PFAE于點(diǎn)F,連接PE,

PFE∽△ABE,則∠PEF=AEB.

∵∠PAF=AEB

∴∠PEF=PAF.

PE=PA.

PFAE,

∴點(diǎn)FAE的中點(diǎn).

AE=

EF=AE=.

,

PE=5,即x=5.

∴滿足條件的x的值為25.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①是1個(gè)直角三角形和2個(gè)小正方形,直角三角形的三條邊長分別是a,b,c,其中a,b是直角邊,正方形的邊長分別是a、b

1)將4個(gè)完全一樣的直角三角形和2個(gè)小正方形構(gòu)成一個(gè)大正方形(如圖②).用兩種不同的方法列代數(shù)式表示圖②中的大正方形面積:

方法一:______________________________

方法二:______________________________;

2)觀察圖②,試寫出,,這四個(gè)代數(shù)式之間的等量關(guān)系;

3)利用(2)的結(jié)論計(jì)算的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A點(diǎn)坐標(biāo)為(5,0),直線ykx+b(b0)y軸交于點(diǎn)B,∠BCA60°,連接AB,∠α105°,則直線ykx+b的表達(dá)式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)環(huán)境保護(hù)意識(shí),在環(huán)保局工作人員指導(dǎo)下,若干名“環(huán)保小衛(wèi)士” 組成了“控制噪聲污染”課題學(xué)習(xí)研究小組.在“世界環(huán)境日”當(dāng)天,該小組抽樣 調(diào)查了全市 40 個(gè)噪聲測(cè)量點(diǎn)在某時(shí)刻的噪聲聲級(jí)(單位:dB),將調(diào)查的數(shù)據(jù)進(jìn)行

處理(設(shè)所測(cè)數(shù)據(jù)均為正整數(shù)),得頻數(shù)分布表如下:

組別

噪聲聲級(jí)分組

頻數(shù)

頻率

1

44.559.5

4

0.1

2

59.574.5

a

0.2

3

74.589.5

10

0.25

4

89.5104.5

b

c

5

104.5119.5

6

0.15

合計(jì)

40

1.00

根據(jù)表中提供的信息解答下列問題:

1)頻數(shù)分布表中的a , b , c

2)補(bǔ)充完整頻數(shù)分布直方圖;

(3)如果全市共有 300 個(gè)測(cè)量點(diǎn),那么在這一時(shí)刻噪聲聲級(jí)小于 75dB 的測(cè)量點(diǎn)約有多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題原型)如圖,在中,對(duì)角線的垂直平分線于點(diǎn),交于點(diǎn),交于點(diǎn).求證:四邊形是菱形.

(小海的證法)證明:

的垂直平分線,

,(第一步)

,(第二步)

.(第三步)

四邊形是平行四邊形.(第四步)

四邊形是菱形. (第五步)

(老師評(píng)析)小海利用對(duì)角線互相平分證明了四邊形是平行四邊形,再利用對(duì)角線互相垂直證明它是菱形,可惜有一步錯(cuò)了.

(挑錯(cuò)改錯(cuò))(1)小海的證明過程在第________步上開始出現(xiàn)了錯(cuò)誤.

2)請(qǐng)你根據(jù)小海的證題思路寫出此題的正確解答過程,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人同時(shí)從家出發(fā),勻速騎共享單車到達(dá)公園入口,然后一同勻速步行到達(dá)驛站,到達(dá)驛站后小明的爸爸立即又騎共享單車按照來時(shí)騎行速度原路返回,在公園入口處改為步行,并按來時(shí)步行速度原路回家,小明到達(dá)驛站后逗留了10分鐘之后騎車回家,爸爸在鍛煉過程中離出發(fā)地的路程與出發(fā)的時(shí)間的函數(shù)關(guān)系如圖.

(1)圖中m_____n_____;(直接寫出結(jié)果)

(2)小明若要在爸爸到家之前趕上,問小明回家騎行速度至少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是__________(填序號(hào))

①若.則一定有 ;②若互為相反數(shù),則;③幾個(gè)有理數(shù)相乘,若負(fù)因數(shù)有偶數(shù)個(gè),那么他們的積為正數(shù);④兩數(shù)相加,其和小于每一個(gè)加數(shù),那么這兩個(gè)加數(shù)必是兩個(gè)負(fù)數(shù):⑤0除以任何數(shù)都為0;⑥若 ,則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB④∠CFE=3DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案