【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P垂直于AC的直
線(xiàn)交菱形ABCD的邊于M、N兩點(diǎn).設(shè)AC=2,BD=1,AP=x,△AMN的面積為y,則
y關(guān)于x的函數(shù)圖象大致形狀是【 】
【答案】C
【解析】△AMN的面積= AP×MN,通過(guò)題干已知條件,用x分別表示出AP、MN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;
解:(1)當(dāng)0<x≤1時(shí),如圖,
在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;
∵MN⊥AC,
∴MN∥BD;
∴△AMN∽△ABD,
∴=,
即,=,MN=x;
∴y=AP×MN=x2(0<x≤1),
∵>0,
∴函數(shù)圖象開(kāi)口向上;
(2)當(dāng)1<x<2,如圖,
同理證得,△CDB∽△CNM,=,
即=,MN=2-x;
∴y=
AP×MN=x×(2-x),
y=-x2+x;
∵-<0,
∴函數(shù)圖象開(kāi)口向下;
綜上答案C的圖象大致符合.
故選:C.
本題考查了二次函數(shù)的圖象,考查了學(xué)生從圖象中讀取信息的數(shù)形結(jié)合能力,體現(xiàn)了分類(lèi)討論的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是矩形紙片,.對(duì)折矩形紙片,使與重合,折痕為;展平后再過(guò)點(diǎn)折疊矩形紙片,使點(diǎn)落在上的點(diǎn),折痕與相交于點(diǎn);再次展平,連接,,延長(zhǎng)交于點(diǎn).以下結(jié)論:①;②;③;④△是等邊三角形; ⑤為線(xiàn)段上一動(dòng)點(diǎn),是的中點(diǎn),則的最小值是.其中正確結(jié)論的序號(hào)是( ).
A. ①②④B. ①④⑤C. ①③④D. ①②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,拋物線(xiàn)C1:y=ax2﹣2x﹣3與拋物線(xiàn)C2:y=x2+mx+n關(guān)于y軸對(duì)稱(chēng),C2與x軸交于A、B兩點(diǎn),其中點(diǎn)A在點(diǎn)B的左側(cè).
(1)求拋物線(xiàn)C1,C2的函數(shù)表達(dá)式;
(2)求A、B兩點(diǎn)的坐標(biāo);
(3)在拋物線(xiàn)C1上是否存在一點(diǎn)P,在拋物線(xiàn)C2上是否存在一點(diǎn)Q,使得以AB為邊,且以A、B、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(﹣2,0),點(diǎn)B(0,4).
(1)求這條拋物線(xiàn)的表達(dá)式;
(2)P是拋物線(xiàn)對(duì)稱(chēng)軸上的點(diǎn),聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點(diǎn)P的坐標(biāo);
(3)將拋物線(xiàn)沿y軸向下平移m個(gè)單位,所得新拋物線(xiàn)與y軸交于點(diǎn)D,過(guò)點(diǎn)D作DE∥x軸交新拋物線(xiàn)于點(diǎn)E,射線(xiàn)EO交新拋物線(xiàn)于點(diǎn)F,如果EO=2OF,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE是O的直徑,點(diǎn)A和點(diǎn)D是⊙O上的兩點(diǎn),過(guò)點(diǎn)A作⊙O的切線(xiàn)交BE延長(zhǎng)線(xiàn)于點(diǎn).
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AB=AC,CE=2,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計(jì)劃在江漢堤坡種植白楊樹(shù),現(xiàn)甲、乙兩家林場(chǎng)有相同的白楊樹(shù)苗可供選擇,其具體銷(xiāo)售方案如下:
甲林場(chǎng) | 乙林場(chǎng) | ||
購(gòu)樹(shù)苗數(shù)量 | 銷(xiāo)售單價(jià) | 購(gòu)樹(shù)苗數(shù)量 | 銷(xiāo)售單價(jià) |
不超過(guò)1000棵時(shí) | 4元/棵 | 不超過(guò)2000棵時(shí) | 4元/棵 |
超過(guò)1000棵的部分 | 3.8元/棵 | 超過(guò)2000棵的部分 | 3.6元/棵 |
設(shè)購(gòu)買(mǎi)白楊樹(shù)苗x棵,到兩家林場(chǎng)購(gòu)買(mǎi)所需費(fèi)用分別為y甲(元)、y乙(元).
(1)該村需要購(gòu)買(mǎi)1500棵白楊樹(shù)苗,若都在甲林場(chǎng)購(gòu)買(mǎi)所需費(fèi)用為 元,若都在乙林場(chǎng)購(gòu)買(mǎi)所需費(fèi)用為 元;
(2)分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場(chǎng)購(gòu)買(mǎi)樹(shù)苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,已知B地位于A地北偏東67°方向,距離A地520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線(xiàn)路的長(zhǎng).(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)P作PA,PB,分別與以OA為半徑的半圓切于A,B,延長(zhǎng)AO交切線(xiàn)PB于點(diǎn)C,交半圓與于點(diǎn)D.
(1)若PC=5,AC=4,求BC的長(zhǎng);
(2)設(shè)DC:AD=1:2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某海域,一艘海監(jiān)船在P處檢測(cè)到南偏西45°方向的B處有一艘不明船只,正沿正西方向航行,海監(jiān)船立即沿南偏西60°方向以40海里/小時(shí)的速度去截獲不明船只,經(jīng)過(guò)1.5小時(shí),剛好在A處截獲不明船只,求不明船只的航行速度.(≈1.41,≈1.73,結(jié)果保留一位小數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com