如圖,已知在直角梯形ABCD中,AB∥CD,∠B=∠C=90°,AB=2,BC=7,CD=6,在BC上找一點(diǎn)P,使△ABP∽△DCP,求出BP的值.
分析:此題中P點(diǎn)的位置不同時(shí),角的對(duì)應(yīng)關(guān)系也不同,所以應(yīng)分情況討論:
(1)當(dāng)∠BAP與∠CPD對(duì)應(yīng)相等時(shí);
(2)當(dāng)∠BAP與∠CDP對(duì)應(yīng)相等時(shí);然后根據(jù)各自的對(duì)應(yīng)線段成比例求出BP的長(zhǎng).
解答:解:(1)當(dāng)△BAP∽△CPD時(shí),
BA
CP
=
BP
CD
,
2
7-BP
=
BP
6
,解得BP=3或BP=4;

(2)當(dāng)△BAP∽△CDP時(shí),
BA
CD
=
BP
CP
,
2
6
=
BP
7-BP
,BP=1.75.
綜上可知,當(dāng)BP的值為1.75,3或4時(shí),△ABP∽△DCP.
點(diǎn)評(píng):此題考查了相似三角形的判定,①如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;②如果兩個(gè)三角形的兩條對(duì)應(yīng)邊的比相等,且夾角相等,那么這兩個(gè)三角形相似;③如果兩個(gè)三角形的兩個(gè)對(duì)應(yīng)角相等,那么這兩個(gè)三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長(zhǎng)線所組成的三角形與原三角形相似.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,對(duì)角線OC、AB交于點(diǎn)D,點(diǎn)E、F、G分別是CD、BD、BC的中點(diǎn),以O(shè)為原點(diǎn),直線OB為x軸建立平面直角坐標(biāo)系,則G、E、D、F四個(gè)點(diǎn)中與點(diǎn)A在同一反比例函數(shù)圖象上的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,已知在直角梯形ABCD中,BC∥AD,AB⊥AD,底AD=6,斜腰CD的垂直平分線EF交AD于G,交BA的延長(zhǎng)線于F,且∠D=45°,求BF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在直角梯形ABCD中,AB∥CD,CD=9,∠B=90°,BC=3
5
,tanA=
5
,P、Q分別是邊AB、CD上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)B重合),且有BP=2CQ.
(1)求AB的長(zhǎng);
(2)設(shè)CQ=x,四邊形PADQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以C為圓心、CQ為半徑作⊙C,以P為圓心、以PA的長(zhǎng)為半徑作⊙P.當(dāng)四邊形PADQ是平行四邊形時(shí),試判斷⊙C與⊙P的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,對(duì)角線OC、AB交于點(diǎn)D,點(diǎn)E、F、G分別是CD、BD、BC的中點(diǎn),以O(shè)為原點(diǎn),直線OB為x軸建立平面直角坐標(biāo)系,則G、E、D、F四個(gè)點(diǎn)中與點(diǎn)A在同一反比例函數(shù)圖象上的是點(diǎn)
(18,6)
(18,6)

查看答案和解析>>

同步練習(xí)冊(cè)答案