【題目】如圖①所示,已知,BC∥OA,∠B=∠A=100°,試回答下列問(wèn)題:
(1)試說(shuō)明:OB∥AC;
(2)如圖②,若點(diǎn)E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.試求∠EOC的度數(shù);
(3)在(2)的條件下,若左右平行移動(dòng)AC,如圖③,那么∠OCB:∠OFB的比值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值;
(4)在(3)的條件下,當(dāng)∠OEB=∠OCA時(shí),試求∠OCA的度數(shù).
【答案】
(1)解:∵BC∥OA,
∴∠B+∠O=180°,又∵∠B=∠A,
∴∠A+∠O=180°,
∴OB∥AC;
(2)解:∵∠B+∠BOA=180°,∠B=100°,
∴∠BOA=80°,
∵OE平分∠BOF,
∴∠BOE=∠EOF,又∵∠FOC=∠AOC,
∴∠EOF+∠FOC= (∠BOF+∠FOA)= ∠BOA=40°;
(3)解:∠OCB:∠OFB的值不發(fā)生變化.理由為:
∵BC∥OA,
∴∠FCO=∠COA,
又∵∠FOC=∠AOC,
∴∠FOC=∠FCO,
∴∠OFB=∠FOC+∠FCO=2∠OCB,
∴∠OCB:∠OFB=1:2;
(4)解:由(1)知:OB∥AC,
則∠OCA=∠BOC,
由(2)可以設(shè):∠BOE=∠EOF=α,∠FOC=∠COA=β,
則∠OCA=∠BOC=2α+β,
∠OEB=∠EOC+∠ECO=α+β+β=α+2β,
∵∠OEB=∠OCA,
∴2α+β=α+2β,
∴α=β,
∵∠AOB=80°,
∴α=β=20°,
∴∠OCA=2α+β=40°+20°=60.
【解析】(1)由同旁內(nèi)角互補(bǔ),兩直線平行證明.(2)由∠FOC=∠AOC,并且OE平分∠BOF得到∠EOC=∠EOF+∠FOC= (∠BOF+∠FOA)= ∠BOA,算出結(jié)果.(3)先得出結(jié)論:∠OCB:∠OFB的值不發(fā)生變化,理由為:由BC與AO平行,得到一對(duì)內(nèi)錯(cuò)角相等,由∠FOC=∠AOC,等量代換得到一對(duì)角相等,再利用外角性質(zhì)等量代換即可得證;(4)由(2)(3)的結(jié)論可得.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用角的運(yùn)算和平行線的判定與性質(zhì),掌握角之間可以進(jìn)行加減運(yùn)算;一個(gè)角可以用其他角的和或差來(lái)表示;由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“如果兩個(gè)角是對(duì)頂角,那么這兩個(gè)角相等”,這個(gè)命題設(shè)是______ ,結(jié)論是______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,∠C=90°,AC<BC,D為BC上一點(diǎn),且到A,B兩點(diǎn)的距離相等.
(1)用直尺和圓規(guī),作出點(diǎn)D的位置(不寫(xiě)作法,保留作圖痕跡);
(2)連結(jié)AD,若∠B=33°,則∠CAD= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問(wèn)題,
例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴m=﹣3,n=3
問(wèn)題(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三邊長(zhǎng),滿足a2+b2=10a+8b﹣41,且c是△ABC中最長(zhǎng)的邊,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x2+2(m+1)x+25是一個(gè)完全平方式,那么m的值( )
A. 4 或-6 B. 4 C. 6 或4 D. -6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù):
阿基米德折弦定理
阿基米德(archimedes,公元前287﹣公元前212年,古希臘)是有史以來(lái)最偉大的數(shù)學(xué)家之一,他與牛頓、高斯并成為三大數(shù)學(xué)王子.
阿拉伯Al﹣Binmi的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al﹣Binmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.
阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分證明過(guò)程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.
∵M是 的中點(diǎn),
∴MA=MC.
…
任務(wù):
(1)請(qǐng)按照上面的證明思路,寫(xiě)出該證明的剩余部分;
(2)填空:如圖3,已知等邊△ABC內(nèi)接于⊙O,AB=2,D為上一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,汽車在東西向的公路l上行駛,途中A,B,C,D四個(gè)十字路口都有紅綠燈.AB之間的距離為800米,BC為1000米, CD為1400米,且l上各路口的紅綠燈設(shè)置為:同時(shí)亮紅燈或同時(shí)亮綠燈,每次紅(綠)燈亮的時(shí)間相同,紅燈亮的時(shí)間與綠燈亮的時(shí)間也相同.若綠燈剛亮?xí)r,甲汽車從A路口以每小時(shí)30千米的速度沿l向東行駛,同時(shí)乙汽車從D路口以相同的速度沿l向西行駛,這兩輛汽車通過(guò)四個(gè)路口時(shí)都沒(méi)有遇到紅燈,則每次綠燈亮的時(shí)間可能設(shè)置為( )
A. 50秒 B. 45秒 C. 40秒 D. 35秒
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com