如圖,將正△ABC分割成m個邊長為1的小正三角形和一個黑色菱形,這個黑色菱形可分割成n個邊長為1的小三角形,若,則△ABC的邊長是    ▲   

 

【答案】

12

【解析】設(shè)正△ABC的邊長為x,則由勾股定理,得高為,。

∵所分成的都是正三角形,

∴根據(jù)銳角三角函數(shù)定義,可得黑色菱形的較長的對角線為 ,較短的對角線為

∴黑色菱形的面積=。

,整理得,11x2-144x+144=0。

解得(不符合題意,舍去),x2=12。

所以,△ABC的邊長是12

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.
(1)若將△FDE繞點B旋轉(zhuǎn)一定角度(如圖2),試說明CD=AE;
(2)已知AB=6,DE=2
3
,把圖1中的△FDE繞點B逆時針方向旋轉(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說明你的理由;
(3)若把圖1中的正△FDE沿BA方向平移(如圖4),連接AE、BE,已知正△ABC和正△FDE的邊長分別是5cm和2
3
cm,問在平移過程中,△ABE是否會成為等腰三角形?若能,直接寫出FB的值;若不能,說明理由.       精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將邊長為15的正方形OEFP置于直角坐標(biāo)系中,OE、OP分別與x軸、y軸的正半軸重合,邊長為2
3
的等邊△ABC的邊BC垂直于x軸,△ABC從點A與點O重合的位置開始,以每秒1個單位長的速度先向右平移,當(dāng)BC邊與直線EF重合時,繼續(xù)以同樣的速度向上平移,當(dāng)點C與點F重合時,△ABC停止移動.設(shè)運動時間為x秒,△PAC的面積為y.
(1)當(dāng)x為何值時,P、A、B三點在同一直線上,求出此時A點的坐標(biāo);
(2)在△ABC向右平移的過程中,當(dāng)x分別取何值時,y取最大值和最小值?最大值和最小值分別是多少?
(3)在△ABC移動的過程中,請你就△PAC面積大小的變化情況提出一個綜合論斷.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:邊城中學(xué)2006-2007年第一學(xué)期中學(xué)數(shù)學(xué)試題 題型:059

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.

(1)若將△FDE繞點B旋轉(zhuǎn)一定角度(如圖2),試說明CD=AE;

(2)已知AB=6,DE=,把圖(1)中的△FDE繞點B逆時針方向旋轉(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說明你的理由;

(3)若把圖(1)中的正△FDE沿BA方向平移(如圖4),連結(jié)AE、BE,已知正△ABC和正△FDE的邊長分別是5 cm和 cm,問在平移過程中,△ABE是否會成為等腰三角形?若能,直接寫出FB的值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.
(1)若將△FDE繞點B旋轉(zhuǎn)一定角度(如圖2),試說明CD=AE;
(2)已知AB=6,DE=數(shù)學(xué)公式,把圖1中的△FDE繞點B逆時針方向旋轉(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說明你的理由;
(3)若把圖1中的正△FDE沿BA方向平移(如圖4),連接AE、BE,已知正△ABC和正△FDE的邊長分別是5cm和數(shù)學(xué)公式cm,問在平移過程中,△ABE是否會成為等腰三角形?若能,直接寫出FB的值;若不能,說明理由.   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省泰州市興化市邊城中學(xué)九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.
(1)若將△FDE繞點B旋轉(zhuǎn)一定角度(如圖2),試說明CD=AE;
(2)已知AB=6,DE=,把圖1中的△FDE繞點B逆時針方向旋轉(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說明你的理由;
(3)若把圖1中的正△FDE沿BA方向平移(如圖4),連接AE、BE,已知正△ABC和正△FDE的邊長分別是5cm和cm,問在平移過程中,△ABE是否會成為等腰三角形?若能,直接寫出FB的值;若不能,說明理由.       

查看答案和解析>>

同步練習(xí)冊答案