【題目】如圖,直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)P是x軸上一動點(diǎn),以點(diǎn)P為圓心,以1個單位長度為半徑作⊙P,當(dāng)⊙P與直線AB相切時(shí),點(diǎn)P的坐標(biāo)是______________.
【答案】
【解析】
根據(jù)函數(shù)解析式求得A(,0),B(0.-3),得到OA=,OB=3,根據(jù)勾股定理得到AB=6,設(shè)⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=1,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解:∵直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(,0),B(0.-3),
∴OA=,OB=3,
∴AB=6,
設(shè)⊙P與直線AB相切于D,
連接PD,
如圖示:
則PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴
∴
∴
∴或,
∴P點(diǎn)坐標(biāo)為:
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=(x+2)2+m與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C.點(diǎn)D在拋物線上,且與點(diǎn)C關(guān)于拋物線的對稱軸對稱,拋物線的頂點(diǎn)為M,點(diǎn)B的坐標(biāo)為(﹣1,0).
(1)求拋物線的解析式及A,C,D的坐標(biāo);
(2)判斷△ABM的形狀,并證明你的結(jié)論;
(3)若點(diǎn)P是直線BD上一個動點(diǎn),是否存在以P,C,D為頂點(diǎn)的三角形與△ABD相似?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某燈飾商店銷售一種進(jìn)價(jià)為每件20元的護(hù)眼燈.銷售過程中發(fā)現(xiàn),每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系可近似地看作一次函數(shù).物價(jià)部門規(guī)定該品牌的護(hù)眼燈售價(jià)不能超過36元.
(1)如果該商店想要每月獲得2000元的利潤,那么銷售單價(jià)應(yīng)定為多少元?
(2)設(shè)該商店每月獲得利潤為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的的網(wǎng)格中,給出了以格點(diǎn)(網(wǎng)格線的交點(diǎn))為端點(diǎn)的線段AB.
(1)將線段AB向上平移5個單位長度,得到線段,畫出線段;連接、,并直接判斷四邊形的形狀;
(2)以點(diǎn)B為旋轉(zhuǎn)中心,將線段AB順時(shí)針旋轉(zhuǎn)得到線段BC,畫出線段BC,并直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB,連接DO并延長交CB的延長線于點(diǎn)E,連接OC.
(1) 判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2) 若BE=,DE=3,求⊙O的半徑及AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實(shí)踐活動中,小林在南濱河路上的A,B兩點(diǎn)處,利用測角儀分別對北岸的一觀景亭D進(jìn)行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB中點(diǎn),AE∥CD,CE∥AB.
(1)試判斷四邊形ADCE的形狀,并證明你的結(jié)論.
(2)連接BE,若∠BAC=30°,CE=1,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表:
時(shí)間x(天) | 1≤x<50 | 50≤x≤90 |
售價(jià)(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤為y元[
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com