【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為yx,點O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2;以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3;以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4按此做法進(jìn)行下去,其中的長___________

【答案】

【解析】

連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可得的長為圓的周長,再找出圓半徑的規(guī)律即可得出結(jié)果.

解:連接P1O1,P2O2P3O3,P4O4,,如圖所示:
P1是⊙1上的點,
P1O1=OO1
∵直線l解析式為y=x,
∴∠P1OO1=45°,
∴△P1OO1為等腰直角三角形,即P1O1x軸,
同理,PnOn垂直于x軸,

的長為圓的周長,

∵以O1為圓心,O1O為半徑畫圓,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交x軸正半軸于點O3,以此類推,
OOn=2n-1,

=×2πOOn=π×2n-1=2n-2π
n=2020時,= 22020-2π=22018π,
故答案為:22018π

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EF在正方形ABCD的對角線BD上,且BE=DF.求證:

1ABE≌△CDF;

2)四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=∠ADC90°,對角線BD平分∠ABC,過點DDEBC,垂足為E,若BD,BC=6,則AB=( 。

A.B.2C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點是射線上的動點,連接,將沿著翻折得到,設(shè),

1)如圖1,當(dāng)點上時,求的值.

2)如圖2,連接,,當(dāng)時,求的面積.

3)在點的運(yùn)動過程中,當(dāng)是等腰三角形時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,的角平分線邊于

1)以邊上一點為圓心,過兩點作(不寫作法,保留作圖痕跡),再判斷直線的位置關(guān)系,并說明理由;

2)若(1)中的邊的另一個交點為,,求線段與劣弧所圍成的圖形面積.(結(jié)果保留根號和

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在RtABCRtCDE中,∠ACB=DCE=90°,∠CAB=CDE=45°,點D是線段AB上一動點,連接BE.

填空: 的值為 ;②∠DBE的度數(shù)為 .

(2)類比探究

如圖2,在RtABCRtCDE中,∠ACB=DCE=90°,∠CAB=CDE=60°,點D是線段AB上一動點,連接BE.請判斷的值及∠DBE的度數(shù),并說明理由.

(3)拓展延伸

如面3,在(2)的條件下,將點D改為直線AB上一動點,其余條件不變,取線段DE的中點M,連接BM、CM,若AC=2,則當(dāng)△CBM是直角三角形時,線段BE的長是多少?請直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如圖1,在中,把繞點順時針旋轉(zhuǎn)得到,把繞點逆時針旋轉(zhuǎn)得到,連接.當(dāng)時,我們稱的“旋補(bǔ)三角形”,上的中線叫做的“旋補(bǔ)中線”.

(特例感知)

1)在圖2,圖3中,的“旋補(bǔ)三角形”,的“旋補(bǔ)中線”.

①如圖2,當(dāng)為等邊三角形,且時,則長為

②如圖3,當(dāng),且時,則長為

(猜想論證)

2)在圖1中,當(dāng)為任意三角形時,猜想的數(shù)量關(guān)系,并給予證明.(如果你沒有找到證明思路,可以考慮延長或延長,……)

(拓展應(yīng)用)

3)如圖4,在四邊形中,,,以為邊在四邊形內(nèi)部作等邊,連接,.若的“旋補(bǔ)三角形”,請直接寫出的“旋補(bǔ)中線”長及四邊形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】連接正八邊形的三個頂點,得到如圖所示的圖形,下列說法錯誤的是(

A.四邊形與四邊形的面積相等

B.連接,則分別平分

C.整個圖形是軸對稱圖形,但不是中心對稱圖形

D.是等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江蘇工會微信公眾號舉辦“全國職工新冠肺炎防控知識”線上有獎競答活動,成績記為,,,5個等級,為了解本次競答活動的成績(等級)情況,現(xiàn)從中隨機(jī)抽取部分職工的成績(等級),統(tǒng)計整理并制作了如下的統(tǒng)計圖①和②:

(1)求這次抽樣調(diào)查的樣本容量,并補(bǔ)全圖①;

(2)如果清江浦區(qū)參加線上有獎競答的職工有1000人,測試成績(等級)為,,級的定為優(yōu)秀,請估計清江浦區(qū)參加本次線上有獎競答成績(等級)達(dá)到優(yōu)秀的職工的總?cè)藬?shù).

查看答案和解析>>

同步練習(xí)冊答案