精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,⊙O的半徑為r(r>0),若點P′在射線OP上,滿足OP′OP=,則稱點P′是點P關于⊙O的“反演點”.

如圖2,⊙O的半徑為4,點B在⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點A,B關于⊙O的反演點,求A′B′的長.

【答案】

【解析】

試題分析:設OA交O于C,連結B′C,如圖2,反演點定義出OA′=2,OB′=4,則點A′為OC的中點,點B和B′重合,再證明OBC為等邊三角形,則B′A′OC,在RtOA′B′中,利用正弦的定義可求A′B′的長.

試題解析:設OA交O于C,連結B′C,如圖2,OA′OA=,而r=4,OA=8,OA′=2,OB′OB=OB′=4,即點B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC為等邊三角形,而點A′為OC的中點,B′A′OC,在RtOA′B′中,sinA′OB′=A′B′=4sin60°=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在直線上順次取A,B,C三點,分別以AB,BC為邊長在直線的同側作正三角形,作得兩個正三角形的另一頂點分別為D,E.

(1)如圖①,連結CD,AE,求證:CD=AE;
(2)如圖②,若AB=1,BC=2,求DE的長;
(3)如圖③,將圖②中的正三角形BEC繞B點作適當的旋轉,連結AE,若有DE2+BE2=AE2 , 試求∠DEB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把下列各數填入表示它所在的集合里.
﹣2,7,﹣1.732,0,3.14,﹣(+5),﹣ ,﹣(﹣3),2007
(1)正數集合{ …}
(2)負數集合{ …}
(3)整數集合{ …}
(4)有理數集合{ …}.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,G是⊙O上兩點,且AC=CG,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.

(1)求證:CD是⊙O的切線.

(2)若,求∠E的度數.

(3)連接AD,在(2)的條件下,若CD=,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在直角坐標系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn1按如圖所示的方式放置,其中點A1、A2、A3、…、An均在一次函數y=kx+b的圖象上,點C1、C2、C3、…、Cn均在x軸上.若點B1的坐標為(1,1),點B2的坐標為(3,2),則點An的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C的坐標分別是(4,0)和(0,2),反比例函數(x>0)的圖象過對角線的交點P并且與AB,BC分別交于D,E兩點,連接OD,OE,DE,則△ODE的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(滿分10分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC,BC.

(1)試判斷直線CD與⊙O的位置關系,并說明理由;

(2)若AD=2,AC=,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,分別延長ABCD的邊CD,AB到E,F,使DE=BF,連接EF,分別交AD,BC于G,H,連結CG,AH.

求證:CG∥AH.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點E是ABC的內心,AE的延長線與BC相交于點F,與ABC的外接圓相交于點D

(1)求證:BFD∽△ABD;

(2)求證:DE=DB.

查看答案和解析>>

同步練習冊答案