(2010•珠海)如圖,PA、PB是⊙O的切線,切點分別為A、B,點C在⊙O上,如果∠P=50°,那么∠ACB等于( )

A.40°
B.50°
C.65°
D.130°
【答案】分析:連接OA,OB,先由切線的性質得出∠OBP=∠OAP=90°,進而得出∠AOB=130°,再根據(jù)圓周角定理即可求解.
解答:解:連接OA,OB.
根據(jù)切線的性質,得∠OBP=∠OAP=90°,
根據(jù)四邊形的內(nèi)角和定理得∠AOB=130°,
再根據(jù)圓周角定理得∠C=∠AOB=65°.
故選C.
點評:綜合運用了切線的性質定理、四邊形的內(nèi)角和定理以及圓周角定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•珠海)如圖,平面直角坐標系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標為(0,6);將BCD沿BD折疊(D點在OC邊上),使C點落在OA邊的E點上,并將BAE沿BE折疊,恰好使點A落在BD的點F上.
(1)直接寫出∠ABE、∠CBD的度數(shù),并求折痕BD所在直線的函數(shù)解析式;
(2)過F點作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線y=ax2+bx+c經(jīng)過B、H、D三點,求拋物線的函數(shù)解析式;
(3)若點P是矩形內(nèi)部的點,且點P在(2)中的拋物線上運動(不含B、D點),過點P作PN⊥BC分別交BC和BD于點N、M,設h=PM-MN,試求出h與P點橫坐標x的函數(shù)解析式,并畫出該函數(shù)的簡圖,分別寫出使PM<NM、PM=MN、PM>MN成立的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省珠海市中考數(shù)學試卷(解析版) 題型:解答題

(2010•珠海)如圖,平面直角坐標系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標為(0,6);將BCD沿BD折疊(D點在OC邊上),使C點落在OA邊的E點上,并將BAE沿BE折疊,恰好使點A落在BD的點F上.
(1)直接寫出∠ABE、∠CBD的度數(shù),并求折痕BD所在直線的函數(shù)解析式;
(2)過F點作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線y=ax2+bx+c經(jīng)過B、H、D三點,求拋物線的函數(shù)解析式;
(3)若點P是矩形內(nèi)部的點,且點P在(2)中的拋物線上運動(不含B、D點),過點P作PN⊥BC分別交BC和BD于點N、M,設h=PM-MN,試求出h與P點橫坐標x的函數(shù)解析式,并畫出該函數(shù)的簡圖,分別寫出使PM<NM、PM=MN、PM>MN成立的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河北省邢臺市隆堯縣堯山中學中考數(shù)學模擬試卷(解析版) 題型:填空題

(2010•珠海)如圖,P是菱形ABCD對角線BD上一點,PE⊥AB于點E,PE=4cm,則點P到BC的距離是    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省珠海市中考數(shù)學試卷(解析版) 題型:解答題

(2010•珠海)如圖,△ABC內(nèi)接于⊙O,AB=6,AC=4,D是AB邊上一點,P是優(yōu)弧BAC的中點,連接PA、PB、PC、PD.
(1)當BD的長度為多少時,△PAD是以AD為底邊的等腰三角形?并證明;
(2)在(1)的條件下,若cos∠PCB=,求PA的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省珠海市中考數(shù)學試卷(解析版) 題型:解答題

(2010•珠海)如圖,⊙O的半徑等于1,弦AB和半徑OC互相平分于點M.求扇形OACB的面積(結果保留π).

查看答案和解析>>

同步練習冊答案