精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC是邊長為6的等邊三角形,PAC邊上一動點,由AC運動(與A、C不重合),QCB延長線上一動點,與點P同時以相同的速度由BCB延長線方向運動(Q不與B重合),過PPE⊥ABE,連接PQABD.

(1)AE=1時,求AP的長;

(2)∠BQD=30°時,求AP的長;

(3)在運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果發(fā)生變化,請說明理由.

【答案】(1)2(2)2(3)DE=3是定值

【解析】

(1)根據等邊三角形的性質得到∠A=60°,根據三角形內角和定理得到∠APE=30°,根據直角三角形的性質計算;

(2)過PPFQC,證明△DBQ≌△DFP,根據全等三角形的性質計算即可;

(3)根據等邊三角形的性質、直角三角形的性質解答.

(1)∵△ABC是等邊三角形,

∴∠A=60°,

PEAB,

∴∠APE=30°,

AE=1,APE=30°,PEAB,

AP=2AE=2;

(2)過PPFQC,

則△AFP是等邊三角形,

P、Q同時出發(fā),速度相同,即BQ=AP,

BQ=PF,

在△DBQ和△DFP中,

,

∴△DBQ≌△DFP,

BD=DF,

∵∠BQD=BDQ=FDP=FPD=30°,

BD=DF=FA=AB=2,

AP=2;

(3)由(2)知BD=DF,

∵△AFP是等邊三角形,PEAB,

AE=EF,

DE=DF+EF=BF+FA=AB=3為定值,即DE的長不變.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】
(1)【提出問題】
如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.
(2)【類比探究】
如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.
(3)【拓展延伸】
如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結CN.試探究∠ABC與∠ACN的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一點A從數軸上表示+2的點開始移動,第一次先向左移動1個單位,再向右移動2個單位;第二次先向左移動3個單位,再向右移動4個單位;第三次先向左移動5個單位,再向右移動6個單位……

(1)寫出第一次移動后這個點在數軸上表示的數為 ;

(2)寫出第二次移動后這個點在數軸上表示的數為 ;

(3)寫出第五次移動后這個點在數軸上表示的數為

4寫出第次移動結果這個點在數軸上表示的數為 ;

(5)如果第次移動后這個點在數軸上表示的數為56,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx與直線y=2x交于點O(0,0),A(a,12).點B是拋物線上O,A之間的一個動點,過點B分別作x軸、y軸的平行線與直線OA交于點C,E.

(1)求拋物線的函數解析式;
(2)若點C為OA的中點,求BC的長;
(3)以BC,BE為邊構造矩形BCDE,設點D的坐標為(m,n),求出m,n之間的關系式.
(4)將射線OA繞原點旋轉45°并與拋物線交于點P,求出P點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中, A=80 ABCACD的平分線交于點A1,得A1; A1BCA1CD的平分線相交于點A2,得A2;……; A7BCA7CD的平分線相交于點A8,得A8,則A8的度數為()

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖的方式拼成一個正方形.

(1)按要求填空:

你認為圖中的陰影部分的正方形的邊長等于   ;

請用兩種不同的方法表示圖中陰影部分的面積:

方法1:   

方法2:   

觀察圖,請寫出代數式(m+n)2,(m﹣n)2,mn這三個代數式之間的等量關系:   ;

(2)根據(1)題中的等量關系,解決如下問題:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.

(3)實際上有許多代數恒等式可以用圖形的面積來表示,如圖,它表示了   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,原有一大長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若原來該大長方形的周長是120,則分割后不用測量就能知道周長的圖形標號為( )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y= (x﹣m)2 m2+m的頂點為A,與y軸的交點為B,連結AB,AC⊥AB,交y軸于點C,延長CA到點D,使AD=AC,連結BD.作AE∥x軸,DE∥y軸.

(1)當m=2時,求點B的坐標;
(2)求DE的長?
(3)①設點D的坐標為(x,y),求y關于x的函數關系式?②過點D作AB的平行線,與第(3)①題確定的函數圖象的另一個交點為P,當m為何值時,以A,B,D,P為頂點的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知P是⊙O外一點,PO交圓O于點C,OC=CP=2,弦AB⊥OC,劣弧AB的度數為120°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.

查看答案和解析>>

同步練習冊答案