【題目】如圖,△ABC和△FPQ均是等邊三角形,點D、E、F分別是△ABC三邊的中點,點P在AB邊上,連接EF、QE.若AB=6,PB=1,則QE= .
【答案】2
【解析】
試題分析:連結(jié)FD,根據(jù)等邊三角形的性質(zhì)由△ABC為等邊三角形得到AC=AB=6,∠A=60°,再根據(jù)點D、E、F分別是等邊△ABC三邊的中點,則AD=BD=AF=3,DP=2,EF為△ABC的中位線,于是可判斷△ADF為等邊三角形,得到∠FDA=60°,利用三角形中位線的性質(zhì)得EF∥AB,EF=AB=3,根據(jù)平行線性質(zhì)得∠1+∠3=60°;又由于△PQF為等邊三角形,則∠2+∠3=60°,F(xiàn)P=FQ,所以∠1=∠2,然后根據(jù)“SAS”判斷△FDP≌△FEQ,所以DP=QE=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正確的結(jié)論的個數(shù)是( )
A.2個 B.3個 C. 4個 D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.2.5微米等于0.0000025米,把0.000 002 5用科學記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點位置如圖所示.
(1) 請畫出△ABC關于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應點);(3分)
(2) 直接寫出△A′B′C′三點的坐標:A′_________,B′__________,C′_________.(3分)
(3)求A B′的長。(4分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖像經(jīng)過點(-1.-5),且與正比例函數(shù)y=x的圖象相交于點(2,m).
(1)求m的值;
(2)求一次函數(shù)y=kx+b的解析式;
(3)求這兩個函數(shù)圖像與x軸所圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,連接EF交AD于G.下列結(jié)論:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④當∠BAC為60°時,AG=3DG,其中不正確的結(jié)論的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com